Nuprl Lemma : member_bs_tree_wf
∀[E:Type]. ∀[x:E]. ∀[tr:bs_tree(E)]. (member_bs_tree(E;x;tr) ∈ ℙ)
Proof
Definitions occuring in Statement :
member_bs_tree: member_bs_tree(E;x;tr)
,
bs_tree: bs_tree(E)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
member_bs_tree: member_bs_tree(E;x;tr)
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
,
so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced :
bs_tree_wf,
or_wf,
equal_wf,
false_wf,
bs_tree_ind_wf_simple
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesisEquality,
universeEquality,
hypothesis,
lambdaEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[E:Type]. \mforall{}[x:E]. \mforall{}[tr:bs\_tree(E)]. (member\_bs\_tree(E;x;tr) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-01_51_05
Last ObjectModification:
2016_04_07-PM-07_00_04
Theory : tree_1
Home
Index