Nuprl Lemma : member_bs_tree_wf
∀[E:Type]. ∀[x:E]. ∀[tr:bs_tree(E)].  (member_bs_tree(E;x;tr) ∈ ℙ)
Proof
Definitions occuring in Statement : 
member_bs_tree: member_bs_tree(E;x;tr)
, 
bs_tree: bs_tree(E)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
member_bs_tree: member_bs_tree(E;x;tr)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced : 
bs_tree_wf, 
or_wf, 
equal_wf, 
false_wf, 
bs_tree_ind_wf_simple
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[E:Type].  \mforall{}[x:E].  \mforall{}[tr:bs\_tree(E)].    (member\_bs\_tree(E;x;tr)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-01_51_05
Last ObjectModification:
2016_04_07-PM-07_00_04
Theory : tree_1
Home
Index