Nuprl Lemma : member_bs_tree_wf

[E:Type]. ∀[x:E]. ∀[tr:bs_tree(E)].  (member_bs_tree(E;x;tr) ∈ ℙ)


Proof




Definitions occuring in Statement :  member_bs_tree: member_bs_tree(E;x;tr) bs_tree: bs_tree(E) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T member_bs_tree: member_bs_tree(E;x;tr) prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced :  bs_tree_wf or_wf equal_wf false_wf bs_tree_ind_wf_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality universeEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[E:Type].  \mforall{}[x:E].  \mforall{}[tr:bs\_tree(E)].    (member\_bs\_tree(E;x;tr)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-01_51_05
Last ObjectModification: 2016_04_07-PM-07_00_04

Theory : tree_1


Home Index