Nuprl Lemma : sq_stable__bs_tree_ordered
∀[E:Type]. ∀cmp:comparison(E). ∀tr:bs_tree(E).  SqStable(bs_tree_ordered(E;cmp;tr))
Proof
Definitions occuring in Statement : 
bs_tree_ordered: bs_tree_ordered(E;cmp;tr), 
bs_tree: bs_tree(E), 
comparison: comparison(T), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
bs_tree_ordered: bs_tree_ordered(E;cmp;tr), 
bst_null: bst_null(), 
bs_tree_ind: bs_tree_ind, 
bst_leaf: bst_leaf(value), 
bst_node: bst_node(left;value;right), 
prop: ℙ, 
and: P ∧ Q, 
comparison: comparison(T), 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
comparison_wf, 
squash_wf, 
member-less_than, 
sq_stable__less_than, 
sq_stable__all, 
less_than_wf, 
member_bs_tree_wf, 
all_wf, 
sq_stable__and, 
decidable__true, 
true_wf, 
sq_stable_from_decidable, 
bs_tree_wf, 
bs_tree_ordered_wf, 
sq_stable_wf, 
bs_tree-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
productEquality, 
functionEquality, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
introduction, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}cmp:comparison(E).  \mforall{}tr:bs\_tree(E).    SqStable(bs\_tree\_ordered(E;cmp;tr))
Date html generated:
2016_05_15-PM-01_51_10
Last ObjectModification:
2016_04_08-AM-00_56_13
Theory : tree_1
Home
Index