Nuprl Lemma : bs_tree-induction

[E:Type]. ∀[P:bs_tree(E) ⟶ ℙ].
  (P[bst_null()]
   (∀value:E. P[bst_leaf(value)])
   (∀left:bs_tree(E). ∀value:E. ∀right:bs_tree(E).  (P[left]  P[right]  P[bst_node(left;value;right)]))
   {∀v:bs_tree(E). P[v]})


Proof




Definitions occuring in Statement :  bst_node: bst_node(left;value;right) bst_leaf: bst_leaf(value) bst_null: bst_null() bs_tree: bs_tree(E) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  bst_null: bst_null() bs_tree_size: bs_tree_size(p) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b bst_leaf: bst_leaf(value) bst_node: bst_node(left;value;right) pi1: fst(t) pi2: snd(t) cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  uniform-comp-nat-induction all_wf bs_tree_wf isect_wf le_wf bs_tree_size_wf nat_wf less_than'_wf bs_tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma lelt_wf uall_wf int_seg_wf bst_node_wf bst_leaf_wf bst_null_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality cumulativity hypothesisEquality hypothesis applyEquality because_Cache setElimination rename functionExtensionality independent_functionElimination productElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption tokenEquality unionElimination equalityElimination independent_isectElimination instantiate atomEquality dependent_pairFormation independent_pairFormation applyLambdaEquality natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll dependent_set_memberEquality imageElimination functionEquality universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}[P:bs\_tree(E)  {}\mrightarrow{}  \mBbbP{}].
    (P[bst\_null()]
    {}\mRightarrow{}  (\mforall{}value:E.  P[bst\_leaf(value)])
    {}\mRightarrow{}  (\mforall{}left:bs\_tree(E).  \mforall{}value:E.  \mforall{}right:bs\_tree(E).
                (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[bst\_node(left;value;right)]))
    {}\mRightarrow{}  \{\mforall{}v:bs\_tree(E).  P[v]\})



Date html generated: 2017_10_01-AM-08_31_01
Last ObjectModification: 2017_07_26-PM-04_24_56

Theory : tree_1


Home Index