Nuprl Lemma : bs_tree-induction
∀[E:Type]. ∀[P:bs_tree(E) ⟶ ℙ].
  (P[bst_null()]
  
⇒ (∀value:E. P[bst_leaf(value)])
  
⇒ (∀left:bs_tree(E). ∀value:E. ∀right:bs_tree(E).  (P[left] 
⇒ P[right] 
⇒ P[bst_node(left;value;right)]))
  
⇒ {∀v:bs_tree(E). P[v]})
Proof
Definitions occuring in Statement : 
bst_node: bst_node(left;value;right)
, 
bst_leaf: bst_leaf(value)
, 
bst_null: bst_null()
, 
bs_tree: bs_tree(E)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
ext-eq: A ≡ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bst_null: bst_null()
, 
bs_tree_size: bs_tree_size(p)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
bst_leaf: bst_leaf(value)
, 
bst_node: bst_node(left;value;right)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
uniform-comp-nat-induction, 
all_wf, 
bs_tree_wf, 
isect_wf, 
le_wf, 
bs_tree_size_wf, 
nat_wf, 
less_than'_wf, 
bs_tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
bst_node_wf, 
bst_leaf_wf, 
bst_null_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
functionExtensionality, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
instantiate, 
atomEquality, 
dependent_pairFormation, 
independent_pairFormation, 
applyLambdaEquality, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
imageElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}[P:bs\_tree(E)  {}\mrightarrow{}  \mBbbP{}].
    (P[bst\_null()]
    {}\mRightarrow{}  (\mforall{}value:E.  P[bst\_leaf(value)])
    {}\mRightarrow{}  (\mforall{}left:bs\_tree(E).  \mforall{}value:E.  \mforall{}right:bs\_tree(E).
                (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[bst\_node(left;value;right)]))
    {}\mRightarrow{}  \{\mforall{}v:bs\_tree(E).  P[v]\})
Date html generated:
2017_10_01-AM-08_31_01
Last ObjectModification:
2017_07_26-PM-04_24_56
Theory : tree_1
Home
Index