Nuprl Lemma : bst_null_wf

[E:Type]. (bst_null() ∈ bs_tree(E))


Proof




Definitions occuring in Statement :  bst_null: bst_null() bs_tree: bs_tree(E) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bs_tree: bs_tree(E) bst_null: bst_null() eq_atom: =a y ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q bs_treeco_size: bs_treeco_size(p) bs_tree_size: bs_tree_size(p) has-value: (a)↓ nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  bs_treeco-ext it_wf ifthenelse_wf eq_atom_wf unit_wf2 bs_treeco_wf false_wf le_wf nat_wf has-value_wf_base set_subtype_base int_subtype_base is-exception_wf equal_wf has-value_wf-partial set-value-type int-value-type bs_treeco_size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule dependent_pairEquality tokenEquality instantiate universeEquality productEquality voidEquality applyEquality productElimination natural_numberEquality independent_pairFormation lambdaFormation divergentSqle sqleReflexivity intEquality lambdaEquality independent_isectElimination because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination cumulativity

Latex:
\mforall{}[E:Type].  (bst\_null()  \mmember{}  bs\_tree(E))



Date html generated: 2017_10_01-AM-08_30_47
Last ObjectModification: 2017_07_26-PM-04_24_44

Theory : tree_1


Home Index