Nuprl Lemma : bs_treeco_size_wf

[E:Type]. ∀[p:bs_treeco(E)].  (bs_treeco_size(p) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  bs_treeco_size: bs_treeco_size(p) bs_treeco: bs_treeco(E) partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) bs_treeco: bs_treeco(E) eq_atom: =a y le: A ≤ B less_than': less_than'(a;b) not: ¬A pi1: fst(t) pi2: snd(t) bs_treeco_size: bs_treeco_size(p)
Lemmas referenced :  fix_wf_corec-partial1 nat_wf set-value-type le_wf int-value-type nat-mono ifthenelse_wf eq_atom_wf unit_wf2 subtype_rel_product bool_wf eqtt_to_assert assert_of_eq_atom subtype_rel_self eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom subtype_rel_wf strong-continuous-depproduct continuous-constant strong-continuous-product continuous-id subtype_rel_weakening atom_subtype_base false_wf inclusion-partial add-wf-partial-nat partial_wf bs_treeco_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality productEquality atomEquality instantiate tokenEquality universeEquality cumulativity voidEquality independent_pairFormation because_Cache lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination independent_functionElimination voidElimination axiomEquality isect_memberEquality isectEquality applyEquality functionExtensionality functionEquality dependent_set_memberEquality

Latex:
\mforall{}[E:Type].  \mforall{}[p:bs\_treeco(E)].    (bs\_treeco\_size(p)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2017_10_01-AM-08_30_44
Last ObjectModification: 2017_07_26-PM-04_24_42

Theory : tree_1


Home Index