Nuprl Lemma : comparison_wf
∀T:Type. (comparison(T) ∈ Type)
Proof
Definitions occuring in Statement : 
comparison: comparison(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
comparison: comparison(T)
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
le_wf, 
equal-wf-T-base, 
equal_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
intEquality, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
minusEquality, 
hypothesis, 
baseClosed, 
natural_numberEquality, 
universeEquality
Latex:
\mforall{}T:Type.  (comparison(T)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-02_35_23
Last ObjectModification:
2016_01_15-AM-07_42_30
Theory : list_1
Home
Index