Nuprl Lemma : bs_tree_delete_wf1
∀[E:Type]. ∀[cmp:comparison(E)]. ∀[x:E]. ∀[tr:bs_tree(E)].  (bs_tree_delete(cmp;x;tr) ∈ bs_tree(E))
Proof
Definitions occuring in Statement : 
bs_tree_delete: bs_tree_delete(cmp;x;tr)
, 
bs_tree: bs_tree(E)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bs_tree_delete: bs_tree_delete(cmp;x;tr)
, 
all: ∀x:A. B[x]
, 
comparison: comparison(T)
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced : 
bs_tree_wf, 
comparison_wf, 
bst_null_wf, 
ifthenelse_wf, 
eq_int_wf, 
bst_leaf_wf, 
bs_tree_max_wf1, 
top_wf, 
less_than_wf, 
bst_node_wf, 
bst_null?_wf, 
equal_wf, 
bs_tree_ind_wf_simple
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
lessCases, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
axiomSqEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
independent_functionElimination, 
productEquality, 
spreadEquality, 
lambdaEquality
Latex:
\mforall{}[E:Type].  \mforall{}[cmp:comparison(E)].  \mforall{}[x:E].  \mforall{}[tr:bs\_tree(E)].    (bs\_tree\_delete(cmp;x;tr)  \mmember{}  bs\_tree(E))
Date html generated:
2019_10_15-AM-10_47_28
Last ObjectModification:
2018_08_20-PM-09_41_28
Theory : tree_1
Home
Index