Nuprl Lemma : bs_tree_delete_wf1

[E:Type]. ∀[cmp:comparison(E)]. ∀[x:E]. ∀[tr:bs_tree(E)].  (bs_tree_delete(cmp;x;tr) ∈ bs_tree(E))


Proof




Definitions occuring in Statement :  bs_tree_delete: bs_tree_delete(cmp;x;tr) bs_tree: bs_tree(E) comparison: comparison(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bs_tree_delete: bs_tree_delete(cmp;x;tr) all: x:A. B[x] comparison: comparison(T) less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced :  bs_tree_wf comparison_wf bst_null_wf ifthenelse_wf eq_int_wf bst_leaf_wf bs_tree_max_wf1 top_wf less_than_wf bst_node_wf bst_null?_wf equal_wf bs_tree_ind_wf_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache dependent_functionElimination universeEquality applyEquality setElimination rename natural_numberEquality lessCases independent_pairFormation baseClosed imageMemberEquality axiomSqEquality voidElimination voidEquality lambdaFormation imageElimination productElimination independent_functionElimination productEquality spreadEquality lambdaEquality

Latex:
\mforall{}[E:Type].  \mforall{}[cmp:comparison(E)].  \mforall{}[x:E].  \mforall{}[tr:bs\_tree(E)].    (bs\_tree\_delete(cmp;x;tr)  \mmember{}  bs\_tree(E))



Date html generated: 2019_10_15-AM-10_47_28
Last ObjectModification: 2018_08_20-PM-09_41_28

Theory : tree_1


Home Index