Nuprl Lemma : bs_tree_max_wf1
∀[E:Type]. ∀[tr:bs_tree(E)]. ∀[d:E].  (bs_tree_max(tr;d) ∈ E × bs_tree(E))
Proof
Definitions occuring in Statement : 
bs_tree_max: bs_tree_max(tr;d)
, 
bs_tree: bs_tree(E)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bs_tree_max: bs_tree_max(tr;d)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced : 
bst_node_wf, 
bst_null?_wf, 
ifthenelse_wf, 
bst_null_wf, 
bs_tree_wf, 
bs_tree_ind_wf_simple
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
productEquality, 
hypothesis, 
independent_pairEquality, 
lambdaEquality, 
spreadEquality, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}[tr:bs\_tree(E)].  \mforall{}[d:E].    (bs\_tree\_max(tr;d)  \mmember{}  E  \mtimes{}  bs\_tree(E))
Date html generated:
2016_05_15-PM-01_51_39
Last ObjectModification:
2016_04_08-PM-03_21_46
Theory : tree_1
Home
Index