Nuprl Lemma : bs_tree_max_wf1

[E:Type]. ∀[tr:bs_tree(E)]. ∀[d:E].  (bs_tree_max(tr;d) ∈ E × bs_tree(E))


Proof




Definitions occuring in Statement :  bs_tree_max: bs_tree_max(tr;d) bs_tree: bs_tree(E) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bs_tree_max: bs_tree_max(tr;d) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced :  bst_node_wf bst_null?_wf ifthenelse_wf bst_null_wf bs_tree_wf bs_tree_ind_wf_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality productEquality hypothesis independent_pairEquality lambdaEquality spreadEquality productElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}[tr:bs\_tree(E)].  \mforall{}[d:E].    (bs\_tree\_max(tr;d)  \mmember{}  E  \mtimes{}  bs\_tree(E))



Date html generated: 2016_05_15-PM-01_51_39
Last ObjectModification: 2016_04_08-PM-03_21_46

Theory : tree_1


Home Index