Step
*
of Lemma
mk_lambdas-fun-unroll
∀[F,K:Top]. ∀[m:ℕ+]. ∀[n:ℕm].
(mk_lambdas-fun(F;λx.mk_applies(x;K;n);n;m) ~ mk_lambdas-fun(λg,y. (F (λx.(g x y)));λx.mk_applies(x;K;n);n;m - 1))
BY
{ ((UnivCD THENA Auto)
THEN D (-2)
THEN RepeatFor 2 ((D (-1) THENA Auto))
THEN (Assert ⌜∃k:ℕ. (m = (n + k) ∈ ℤ)⌝⋅ THENA (InstConcl [⌜m - n⌝]⋅ THEN Auto'))
THEN D (-1)
THEN HypSubst' (-1) 0
THEN (Assert ⌜0 < k⌝⋅ THENA Auto')
THEN ThinVar `m'
THEN MoveToConcl (-4)
THEN MoveToConcl (-3)
THEN NatInd (-2)
THEN UnivCD
THEN Try (Complete (Auto))) }
1
1. F : Top
2. k : ℤ
3. 0 < k
4. 0 < k - 1
⇒ (∀K:Top. ∀n:ℤ.
((0 ≤ n)
⇒ (mk_lambdas-fun(F;λx.mk_applies(x;K;n);n;n + (k - 1))
~ mk_lambdas-fun(λg,y. (F (λx.(g x y)));λx.mk_applies(x;K;n);n;(n + (k - 1)) - 1))))
5. 0 < k
6. K : Top
7. n : ℤ
8. 0 ≤ n
⊢ mk_lambdas-fun(F;λx.mk_applies(x;K;n);n;n + k) ~ mk_lambdas-fun(λg,y. (F (λx.(g x y)));λx.mk_applies(x;K;n);n;(n + k) \000C- 1)
Latex:
Latex:
\mforall{}[F,K:Top]. \mforall{}[m:\mBbbN{}\msupplus{}]. \mforall{}[n:\mBbbN{}m].
(mk\_lambdas-fun(F;\mlambda{}x.mk\_applies(x;K;n);n;m)
\msim{} mk\_lambdas-fun(\mlambda{}g,y. (F (\mlambda{}x.(g x y)));\mlambda{}x.mk\_applies(x;K;n);n;m - 1))
By
Latex:
((UnivCD THENA Auto)
THEN D (-2)
THEN RepeatFor 2 ((D (-1) THENA Auto))
THEN (Assert \mkleeneopen{}\mexists{}k:\mBbbN{}. (m = (n + k))\mkleeneclose{}\mcdot{} THENA (InstConcl [\mkleeneopen{}m - n\mkleeneclose{}]\mcdot{} THEN Auto'))
THEN D (-1)
THEN HypSubst' (-1) 0
THEN (Assert \mkleeneopen{}0 < k\mkleeneclose{}\mcdot{} THENA Auto')
THEN ThinVar `m'
THEN MoveToConcl (-4)
THEN MoveToConcl (-3)
THEN NatInd (-2)
THEN UnivCD
THEN Try (Complete (Auto)))
Home
Index