Nuprl Lemma : eqfun_p_shift

[A,B:Type]. ∀[eqa:A ⟶ A ⟶ 𝔹]. ∀[eqb:B ⟶ B ⟶ 𝔹]. ∀[f:A ⟶ B].
  (IsEqFun(A;eqa)) supposing (IsEqFun(B;eqb) and RelsIso(A;B;x,y.↑(x eqa y);x,y.↑(x eqb y);f) and Inj(A;B;f))


Proof




Definitions occuring in Statement :  rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) eqfun_p: IsEqFun(T;eq) inject: Inj(A;B;f) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] infix_ap: y function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eqfun_p: IsEqFun(T;eq) rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) inject: Inj(A;B;f) uiff: uiff(P;Q) and: P ∧ Q prop: infix_ap: y implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q squash: T true: True subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  assert_wf assert_witness equal_wf eqfun_p_wf rels_iso_wf inject_wf bool_wf iff_transitivity iff_weakening_uiff uiff_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis extract_by_obid applyEquality functionExtensionality cumulativity equalityTransitivity equalitySymmetry independent_functionElimination because_Cache lambdaEquality functionEquality universeEquality addLevel independent_pairFormation independent_isectElimination lambdaFormation dependent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,B:Type].  \mforall{}[eqa:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[eqb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (IsEqFun(A;eqa))  supposing 
          (IsEqFun(B;eqb)  and 
          RelsIso(A;B;x,y.\muparrow{}(x  eqa  y);x,y.\muparrow{}(x  eqb  y);f)  and 
          Inj(A;B;f))



Date html generated: 2017_10_01-AM-08_13_10
Last ObjectModification: 2017_02_28-PM-01_57_28

Theory : gen_algebra_1


Home Index