Nuprl Lemma : eqfun_p_shift
∀[A,B:Type]. ∀[eqa:A ⟶ A ⟶ 𝔹]. ∀[eqb:B ⟶ B ⟶ 𝔹]. ∀[f:A ⟶ B].
  (IsEqFun(A;eqa)) supposing (IsEqFun(B;eqb) and RelsIso(A;B;x,y.↑(x eqa y);x,y.↑(x eqb y);f) and Inj(A;B;f))
Proof
Definitions occuring in Statement : 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
eqfun_p: IsEqFun(T;eq)
, 
inject: Inj(A;B;f)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
eqfun_p: IsEqFun(T;eq)
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
inject: Inj(A;B;f)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
assert_wf, 
assert_witness, 
equal_wf, 
eqfun_p_wf, 
rels_iso_wf, 
inject_wf, 
bool_wf, 
iff_transitivity, 
iff_weakening_uiff, 
uiff_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
applyEquality, 
functionExtensionality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
lambdaEquality, 
functionEquality, 
universeEquality, 
addLevel, 
independent_pairFormation, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,B:Type].  \mforall{}[eqa:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[eqb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (IsEqFun(A;eqa))  supposing 
          (IsEqFun(B;eqb)  and 
          RelsIso(A;B;x,y.\muparrow{}(x  eqa  y);x,y.\muparrow{}(x  eqb  y);f)  and 
          Inj(A;B;f))
Date html generated:
2017_10_01-AM-08_13_10
Last ObjectModification:
2017_02_28-PM-01_57_28
Theory : gen_algebra_1
Home
Index