Nuprl Lemma : abdgrp_properties
∀[g:AbDGrp]. IsEqFun(|g|;=b)
Proof
Definitions occuring in Statement : 
abdgrp: AbDGrp, 
grp_eq: =b, 
grp_car: |g|, 
eqfun_p: IsEqFun(T;eq), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
mon: Mon, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
eqfun_p: IsEqFun(T;eq), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
infix_ap: x f y
Lemmas referenced : 
abdgrp_wf, 
equal_wf, 
assert_witness, 
assert_wf, 
grp_eq_wf, 
grp_car_wf, 
sq_stable__eqfun_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:AbDGrp].  IsEqFun(|g|;=\msubb{})
 Date html generated: 
2016_05_15-PM-00_09_41
 Last ObjectModification: 
2016_01_15-PM-11_06_08
Theory : groups_1
Home
Index