Nuprl Lemma : grp_op_wf2

[g:OGrp]. (* ∈ |g|+ ⟶ |g|+ ⟶ |g|+)


Proof




Definitions occuring in Statement :  hgrp_car: |g|+ ocgrp: OGrp grp_op: * uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon hgrp_car: |g|+ prop: uimplies: supposing a infix_ap: y
Lemmas referenced :  grp_op_wf hgrp_car_wf ocgrp_wf hgrp_car_properties grp_leq_wf grp_id_wf grp_op_polarity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis functionExtensionality applyEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry because_Cache dependent_set_memberEquality independent_isectElimination

Latex:
\mforall{}[g:OGrp].  (*  \mmember{}  |g|\msupplus{}  {}\mrightarrow{}  |g|\msupplus{}  {}\mrightarrow{}  |g|\msupplus{})



Date html generated: 2016_05_15-PM-00_14_07
Last ObjectModification: 2015_12_26-PM-11_41_09

Theory : groups_1


Home Index