Nuprl Lemma : omon_lt_mono_imp_leq_mono
∀[g:OMon]. {∀[a:|g|]. monot(|g|;x,y.x ≤ y;λz.(a * z))} supposing ∀a:|g|. monot(|g|;x,y.x < y;λz.(a * z))
Proof
Definitions occuring in Statement : 
grp_lt: a < b
, 
grp_leq: a ≤ b
, 
omon: OMon
, 
grp_op: *
, 
grp_car: |g|
, 
monot: monot(T;x,y.R[x; y];f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
monot: monot(T;x,y.R[x; y];f)
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
omon: OMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
grp_leq: a ≤ b
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
grp_leq_wf, 
grp_car_wf, 
assert_witness, 
grp_le_wf, 
grp_op_wf, 
all_wf, 
grp_lt_wf, 
infix_ap_wf, 
omon_wf, 
grp_leq_iff_lt_or_eq, 
grp_leq_weakening_lt, 
grp_leq_weakening_eq, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
unionElimination, 
independent_isectElimination, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[g:OMon]
    \{\mforall{}[a:|g|].  monot(|g|;x,y.x  \mleq{}  y;\mlambda{}z.(a  *  z))\}  supposing  \mforall{}a:|g|.  monot(|g|;x,y.x  <  y;\mlambda{}z.(a  *  z))
Date html generated:
2017_10_01-AM-08_14_52
Last ObjectModification:
2017_02_28-PM-01_59_09
Theory : groups_1
Home
Index