Nuprl Lemma : omon_lt_mono_imp_leq_mono

[g:OMon]. {∀[a:|g|]. monot(|g|;x,y.x ≤ y;λz.(a z))} supposing ∀a:|g|. monot(|g|;x,y.x < y;λz.(a z))


Proof




Definitions occuring in Statement :  grp_lt: a < b grp_leq: a ≤ b omon: OMon grp_op: * grp_car: |g| monot: monot(T;x,y.R[x; y];f) uimplies: supposing a uall: [x:A]. B[x] guard: {T} infix_ap: y all: x:A. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  monot: monot(T;x,y.R[x; y];f) guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: omon: OMon abmonoid: AbMon mon: Mon grp_leq: a ≤ b infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q squash: T true: True subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  grp_leq_wf grp_car_wf assert_witness grp_le_wf grp_op_wf all_wf grp_lt_wf infix_ap_wf omon_wf grp_leq_iff_lt_or_eq grp_leq_weakening_lt grp_leq_weakening_eq equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination applyEquality because_Cache independent_functionElimination isect_memberEquality functionEquality equalityTransitivity equalitySymmetry productElimination unionElimination independent_isectElimination imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[g:OMon]
    \{\mforall{}[a:|g|].  monot(|g|;x,y.x  \mleq{}  y;\mlambda{}z.(a  *  z))\}  supposing  \mforall{}a:|g|.  monot(|g|;x,y.x  <  y;\mlambda{}z.(a  *  z))



Date html generated: 2017_10_01-AM-08_14_52
Last ObjectModification: 2017_02_28-PM-01_59_09

Theory : groups_1


Home Index