Nuprl Lemma : idom_alt_char
∀r:CRng
  ((∀x,y:|r|.  Dec(x = y ∈ |r|))
  
⇒ (IsIntegDom(r) 
⇐⇒ 0 ≠ 1 ∈ |r|  ∧ (∀u,v:|r|.  (u = 0 ∈ |r|) ∨ (v = 0 ∈ |r|) supposing (u * v) = 0 ∈ |r|)))
Proof
Definitions occuring in Statement : 
integ_dom_p: IsIntegDom(r)
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_zero: 0
, 
rng_car: |r|
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
integ_dom_p: IsIntegDom(r)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
guard: {T}
Lemmas referenced : 
equal_wf, 
rng_car_wf, 
rng_zero_wf, 
rng_one_wf, 
rng_times_wf, 
nequal_wf, 
all_wf, 
not_wf, 
infix_ap_wf, 
isect_wf, 
or_wf, 
decidable_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
isect_memberFormation, 
axiomEquality, 
applyEquality, 
productEquality, 
lambdaEquality, 
functionEquality, 
productElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
inrFormation, 
inlFormation, 
independent_isectElimination
Latex:
\mforall{}r:CRng
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (IsIntegDom(r)  \mLeftarrow{}{}\mRightarrow{}  0  \mneq{}  1  \mmember{}  |r|    \mwedge{}  (\mforall{}u,v:|r|.    (u  =  0)  \mvee{}  (v  =  0)  supposing  (u  *  v)  =  0)))
Date html generated:
2017_10_01-AM-08_18_26
Last ObjectModification:
2017_02_28-PM-02_03_20
Theory : rings_1
Home
Index