Nuprl Lemma : idom_alt_char

r:CRng
  ((∀x,y:|r|.  Dec(x y ∈ |r|))
   (IsIntegDom(r) ⇐⇒ 0 ≠ 1 ∈ |r|  ∧ (∀u,v:|r|.  (u 0 ∈ |r|) ∨ (v 0 ∈ |r|) supposing (u v) 0 ∈ |r|)))


Proof




Definitions occuring in Statement :  integ_dom_p: IsIntegDom(r) crng: CRng rng_one: 1 rng_times: * rng_zero: 0 rng_car: |r| decidable: Dec(P) uimplies: supposing a infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q nequal: a ≠ b ∈  implies:  Q or: P ∨ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  integ_dom_p: IsIntegDom(r) all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q nequal: a ≠ b ∈  not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] crng: CRng rng: Rng uimplies: supposing a infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q or: P ∨ Q decidable: Dec(P) guard: {T}
Lemmas referenced :  equal_wf rng_car_wf rng_zero_wf rng_one_wf rng_times_wf nequal_wf all_wf not_wf infix_ap_wf isect_wf or_wf decidable_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut thin sqequalHypSubstitution hypothesis independent_functionElimination voidElimination introduction extract_by_obid isectElimination setElimination rename hypothesisEquality because_Cache isect_memberFormation axiomEquality applyEquality productEquality lambdaEquality functionEquality productElimination dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination inrFormation inlFormation independent_isectElimination

Latex:
\mforall{}r:CRng
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (IsIntegDom(r)  \mLeftarrow{}{}\mRightarrow{}  0  \mneq{}  1  \mmember{}  |r|    \mwedge{}  (\mforall{}u,v:|r|.    (u  =  0)  \mvee{}  (v  =  0)  supposing  (u  *  v)  =  0)))



Date html generated: 2017_10_01-AM-08_18_26
Last ObjectModification: 2017_02_28-PM-02_03_20

Theory : rings_1


Home Index