Step
*
of Lemma
p-unit-part-unique
No Annotations
∀[p:{2...}]. ∀[k,j:ℕ]. ∀[a,b:p-units(p)].
  (a = b ∈ p-units(p)) ∧ (k = j ∈ ℤ) supposing p^k(p) * a = p^j(p) * b ∈ p-adics(p)
BY
{ (Intros THEN (Unhide THENA Auto) THEN Assert ⌜k = j ∈ ℤ⌝⋅) }
1
.....assertion..... 
1. p : {2...}
2. k : ℕ
3. j : ℕ
4. a : p-units(p)
5. b : p-units(p)
6. p^k(p) * a = p^j(p) * b ∈ p-adics(p)
⊢ k = j ∈ ℤ
2
1. p : {2...}
2. k : ℕ
3. j : ℕ
4. a : p-units(p)
5. b : p-units(p)
6. p^k(p) * a = p^j(p) * b ∈ p-adics(p)
7. k = j ∈ ℤ
⊢ (a = b ∈ p-units(p)) ∧ (k = j ∈ ℤ)
Latex:
Latex:
No  Annotations
\mforall{}[p:\{2...\}].  \mforall{}[k,j:\mBbbN{}].  \mforall{}[a,b:p-units(p)].    (a  =  b)  \mwedge{}  (k  =  j)  supposing  p\^{}k(p)  *  a  =  p\^{}j(p)  *  b
By
Latex:
(Intros  THEN  (Unhide  THENA  Auto)  THEN  Assert  \mkleeneopen{}k  =  j\mkleeneclose{}\mcdot{})
Home
Index