Nuprl Lemma : p-unit-part-unique
∀[p:{2...}]. ∀[k,j:ℕ]. ∀[a,b:p-units(p)].
  (a = b ∈ p-units(p)) ∧ (k = j ∈ ℤ) supposing p^k(p) * a = p^j(p) * b ∈ p-adics(p)
Proof
Definitions occuring in Statement : 
p-units: p-units(p)
, 
p-int: k(p)
, 
p-mul: x * y
, 
p-adics: p-adics(p)
, 
exp: i^n
, 
int_upper: {i...}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
le: A ≤ B
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
p-units: p-units(p)
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
label: ...$L... t
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
p-adics: p-adics(p)
, 
p-mul: x * y
, 
p-int: k(p)
, 
p-reduce: i mod(p^n)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
Lemmas referenced : 
sq_stable__and, 
equal_wf, 
p-units_wf, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
sq_stable__equal, 
p-adics_wf, 
p-mul_wf, 
subtype_rel_sets_simple, 
less_than_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
istype-le, 
p-int_wf, 
exp_wf2, 
istype-nat, 
istype-int_upper, 
nat_wf, 
iff_weakening_equal, 
subtype_rel_self, 
add-zero, 
zero-mul, 
add-mul-special, 
add-associates, 
add-swap, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
exp-positive, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
itermMultiply_wf, 
intformeq_wf, 
multiply-is-int-iff, 
decidable__equal_int, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_upper_properties, 
nat_properties, 
subtract_wf, 
exp_add, 
false_wf, 
exp_wf_nat_plus, 
true_wf, 
squash_wf, 
nat_plus_wf, 
subtype_base_sq, 
p-mul-int, 
p-mul-assoc, 
p-mul-int-cancelation-1, 
int_seg_wf, 
exp1, 
rem-exact, 
exp_step, 
rem_bounds_1, 
nat_plus_properties, 
nequal_wf, 
subtype_rel_sets, 
upper_subtype_nat, 
nat_plus_subtype_nat, 
exp_wf4, 
modulus-is-rem, 
p-reduce-0, 
istype-universe, 
istype-less_than, 
itermAdd_wf, 
int_term_value_add_lemma, 
p-adic-property, 
eqmod_wf, 
equal-wf-T-base, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
isect_memberEquality_alt, 
intEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
equalityIstype, 
inhabitedIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
independent_pairFormation, 
productElimination, 
unionElimination, 
voidElimination, 
Error :memTop, 
minusEquality, 
addEquality, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
lambdaFormation, 
dependent_set_memberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality, 
cumulativity, 
instantiate, 
setEquality, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
functionEquality, 
multiplyEquality, 
functionIsType
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[k,j:\mBbbN{}].  \mforall{}[a,b:p-units(p)].    (a  =  b)  \mwedge{}  (k  =  j)  supposing  p\^{}k(p)  *  a  =  p\^{}j(p)  *  b
Date html generated:
2020_05_19-PM-10_08_30
Last ObjectModification:
2020_01_08-PM-06_00_00
Theory : rings_1
Home
Index