Nuprl Lemma : p-unit-part-unique

[p:{2...}]. ∀[k,j:ℕ]. ∀[a,b:p-units(p)].
  (a b ∈ p-units(p)) ∧ (k j ∈ ℤsupposing p^k(p) p^j(p) b ∈ p-adics(p)


Proof




Definitions occuring in Statement :  p-units: p-units(p) p-int: k(p) p-mul: y p-adics: p-adics(p) exp: i^n int_upper: {i...} nat: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T int_upper: {i...} subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q sq_stable: SqStable(P) squash: T nat_plus: + all: x:A. B[x] and: P ∧ Q le: A ≤ B cand: c∧ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) less_than': less_than'(a;b) true: True p-units: p-units(p) sq_type: SQType(T) subtract: m label: ...$L... t top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  guard: {T} prop: int_seg: {i..j-} less_than: a < b p-adics: p-adics(p) p-mul: y p-int: k(p) p-reduce: mod(p^n) nequal: a ≠ b ∈  int_nzero: -o
Lemmas referenced :  sq_stable__and equal_wf p-units_wf equal-wf-base set_subtype_base le_wf istype-int int_subtype_base sq_stable__equal p-adics_wf p-mul_wf subtype_rel_sets_simple less_than_wf decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel istype-le p-int_wf exp_wf2 istype-nat istype-int_upper nat_wf iff_weakening_equal subtype_rel_self add-zero zero-mul add-mul-special add-associates add-swap minus-minus minus-add minus-one-mul-top minus-one-mul condition-implies-le less-iff-le exp-positive int_term_value_mul_lemma int_formula_prop_eq_lemma itermMultiply_wf intformeq_wf multiply-is-int-iff decidable__equal_int int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le int_upper_properties nat_properties subtract_wf exp_add false_wf exp_wf_nat_plus true_wf squash_wf nat_plus_wf subtype_base_sq p-mul-int p-mul-assoc p-mul-int-cancelation-1 int_seg_wf exp1 rem-exact exp_step rem_bounds_1 nat_plus_properties nequal_wf subtype_rel_sets upper_subtype_nat nat_plus_subtype_nat exp_wf4 modulus-is-rem p-reduce-0 istype-universe istype-less_than itermAdd_wf int_term_value_add_lemma p-adic-property eqmod_wf equal-wf-T-base not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality isect_memberEquality_alt intEquality applyEquality sqequalRule lambdaEquality_alt natural_numberEquality independent_isectElimination equalityIstype inhabitedIsType independent_functionElimination lambdaFormation_alt dependent_functionElimination axiomEquality functionIsTypeImplies imageMemberEquality baseClosed imageElimination universeIsType independent_pairFormation productElimination unionElimination voidElimination Error :memTop,  minusEquality addEquality closedConclusion baseApply promote_hyp pointwiseFunctionality voidEquality isect_memberEquality int_eqEquality dependent_pairFormation approximateComputation lambdaFormation dependent_set_memberEquality universeEquality equalitySymmetry equalityTransitivity lambdaEquality cumulativity instantiate setEquality dependent_pairFormation_alt dependent_set_memberEquality_alt functionEquality multiplyEquality functionIsType

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[k,j:\mBbbN{}].  \mforall{}[a,b:p-units(p)].    (a  =  b)  \mwedge{}  (k  =  j)  supposing  p\^{}k(p)  *  a  =  p\^{}j(p)  *  b



Date html generated: 2020_05_19-PM-10_08_30
Last ObjectModification: 2020_01_08-PM-06_00_00

Theory : rings_1


Home Index