Nuprl Lemma : ring_polynomial_null
∀r:CRng. ∀t:int_term().  t ≡ "0" supposing inl Ax ≤ null(int_term_to_ipoly(t))
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermConstant: "const", 
int_term: int_term(), 
null: null(as), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
inl: inl x, 
natural_number: $n, 
sqle: s ≤ t, 
axiom: Ax
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iPolynomial: iPolynomial(), 
or: P ∨ Q, 
uimplies: b supposing a, 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
rng: Rng, 
prop: ℙ, 
cons: [a / b], 
top: Top, 
ipolynomial-term: ipolynomial-term(p), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
not: ¬A, 
false: False
Lemmas referenced : 
ring_term_polynomial, 
int_term_to_ipoly_wf, 
iPolynomial_wf, 
iMonomial_wf, 
list-cases, 
null_nil_lemma, 
rng_car_wf, 
sqle_wf_base, 
ringeq_int_terms_wf, 
ipolynomial-term_wf, 
nil_wf, 
product_subtype_list, 
null_cons_lemma, 
cons_wf, 
equal_wf, 
int_term_wf, 
crng_wf, 
not-btrue-sqle-bfalse
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
unionElimination, 
sqequalRule, 
isect_memberFormation, 
lambdaEquality, 
axiomEquality, 
functionEquality, 
intEquality, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}r:CRng.  \mforall{}t:int\_term().    t  \mequiv{}  "0"  supposing  inl  Ax  \mleq{}  null(int\_term\_to\_ipoly(t))
Date html generated:
2018_05_21-PM-03_17_28
Last ObjectModification:
2018_05_19-AM-08_08_22
Theory : rings_1
Home
Index