Nuprl Lemma : ring_polynomial_null

r:CRng. ∀t:int_term().  t ≡ "0" supposing inl Ax ≤ null(int_term_to_ipoly(t))


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 crng: CRng int_term_to_ipoly: int_term_to_ipoly(t) itermConstant: "const" int_term: int_term() null: null(as) uimplies: supposing a all: x:A. B[x] inl: inl x natural_number: $n sqle: s ≤ t axiom: Ax
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q iPolynomial: iPolynomial() or: P ∨ Q uimplies: supposing a ringeq_int_terms: t1 ≡ t2 crng: CRng rng: Rng prop: cons: [a b] top: Top ipolynomial-term: ipolynomial-term(p) ifthenelse: if then else fi  btrue: tt it: not: ¬A false: False
Lemmas referenced :  ring_term_polynomial int_term_to_ipoly_wf iPolynomial_wf iMonomial_wf list-cases null_nil_lemma rng_car_wf sqle_wf_base ringeq_int_terms_wf ipolynomial-term_wf nil_wf product_subtype_list null_cons_lemma cons_wf equal_wf int_term_wf crng_wf not-btrue-sqle-bfalse
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename unionElimination sqequalRule isect_memberFormation lambdaEquality axiomEquality functionEquality intEquality baseClosed promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality because_Cache equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}r:CRng.  \mforall{}t:int\_term().    t  \mequiv{}  "0"  supposing  inl  Ax  \mleq{}  null(int\_term\_to\_ipoly(t))



Date html generated: 2018_05_21-PM-03_17_28
Last ObjectModification: 2018_05_19-AM-08_08_22

Theory : rings_1


Home Index