Nuprl Lemma : ring_term_polynomial

r:CRng. ∀t:int_term().  ipolynomial-term(int_term_to_ipoly(t)) ≡ t


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 crng: CRng int_term_to_ipoly: int_term_to_ipoly(t) ipolynomial-term: ipolynomial-term(p) int_term: int_term() all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T subtype_rel: A ⊆B iPolynomial: iPolynomial() crng: CRng so_apply: x[s] implies:  Q int_term_to_ipoly: int_term_to_ipoly(t) itermConstant: "const" int_term_ind: int_term_ind itermVar: vvar itermAdd: left (+) right prop: itermSubtract: left (-) right itermMultiply: left (*) right itermMinus: "-"num guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) false: False not: ¬A ringeq_int_terms: t1 ≡ t2 ring_term_value: ring_term_value(f;t) ipolynomial-term: ipolynomial-term(p) ifthenelse: if then else fi  null: null(as) nil: [] it: btrue: tt int-to-ring: int-to-ring(r;n) lt_int: i <j bfalse: ff rng_nat_op: n ⋅e mon_nat_op: n ⋅ e nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y grp_id: e pi1: fst(t) pi2: snd(t) add_grp_of_rng: r↓+gp rng_zero: 0 rng: Rng top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] imonomial-term: imonomial-term(m) true: True and: P ∧ Q squash: T infix_ap: y iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_term-induction ringeq_int_terms_wf ipolynomial-term_wf int_term_to_ipoly_wf iPolynomial_wf int_term_wf crng_wf decidable__equal_int subtype_base_sq int_subtype_base ring_term_value_wf itermConstant_wf rng_car_wf null_cons_lemma spread_cons_lemma list_accum_nil_lemma list_accum_cons_lemma ring_term_value_mul_lemma ring_term_value_const_lemma ring_term_value_var_lemma rng_times_wf rng_times_one equal_wf squash_wf true_wf int-to-ring-one subtype_rel_self iff_weakening_equal add-ipoly-ringeq add_ipoly_wf itermAdd_wf add-ipoly_wf1 uiff_transitivity add_ipoly-sq ringeq_int_terms_functionality ringeq_int_terms_weakening itermAdd_functionality_wrt_ringeq minus-poly-ringeq minus-poly_wf itermSubtract_wf itermMinus_wf ring_term_value_add_lemma ring_term_value_minus_lemma ring_term_value_sub_lemma rng_plus_wf rng_minus_wf ringeq_int_terms_transitivity itermMinus_functionality_wrt_ringeq mul-ipoly-ringeq mul_ipoly_wf itermMultiply_wf mul-ipoly_wf mul_poly-sq itermMultiply_functionality_wrt_ringeq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality hypothesis applyEquality setElimination rename independent_functionElimination intEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination instantiate cumulativity independent_isectElimination int_eqReduceFalseSq functionEquality isect_memberEquality voidElimination voidEquality productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}r:CRng.  \mforall{}t:int\_term().    ipolynomial-term(int\_term\_to\_ipoly(t))  \mequiv{}  t



Date html generated: 2018_05_21-PM-03_17_24
Last ObjectModification: 2018_05_19-AM-08_08_35

Theory : rings_1


Home Index