Nuprl Lemma : ring_term_polynomial
∀r:CRng. ∀t:int_term().  ipolynomial-term(int_term_to_ipoly(t)) ≡ t
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2
, 
crng: CRng
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
ipolynomial-term: ipolynomial-term(p)
, 
int_term: int_term()
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
iPolynomial: iPolynomial()
, 
crng: CRng
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
itermVar: vvar
, 
itermAdd: left (+) right
, 
prop: ℙ
, 
itermSubtract: left (-) right
, 
itermMultiply: left (*) right
, 
itermMinus: "-"num
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
false: False
, 
not: ¬A
, 
ringeq_int_terms: t1 ≡ t2
, 
ring_term_value: ring_term_value(f;t)
, 
ipolynomial-term: ipolynomial-term(p)
, 
ifthenelse: if b then t else f fi 
, 
null: null(as)
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
int-to-ring: int-to-ring(r;n)
, 
lt_int: i <z j
, 
bfalse: ff
, 
rng_nat_op: n ⋅r e
, 
mon_nat_op: n ⋅ e
, 
nat_op: n x(op;id) e
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
grp_id: e
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
add_grp_of_rng: r↓+gp
, 
rng_zero: 0
, 
rng: Rng
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
imonomial-term: imonomial-term(m)
, 
true: True
, 
and: P ∧ Q
, 
squash: ↓T
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_term-induction, 
ringeq_int_terms_wf, 
ipolynomial-term_wf, 
int_term_to_ipoly_wf, 
iPolynomial_wf, 
int_term_wf, 
crng_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
ring_term_value_wf, 
itermConstant_wf, 
rng_car_wf, 
null_cons_lemma, 
spread_cons_lemma, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_const_lemma, 
ring_term_value_var_lemma, 
rng_times_wf, 
rng_times_one, 
equal_wf, 
squash_wf, 
true_wf, 
int-to-ring-one, 
subtype_rel_self, 
iff_weakening_equal, 
add-ipoly-ringeq, 
add_ipoly_wf, 
itermAdd_wf, 
add-ipoly_wf1, 
uiff_transitivity, 
add_ipoly-sq, 
ringeq_int_terms_functionality, 
ringeq_int_terms_weakening, 
itermAdd_functionality_wrt_ringeq, 
minus-poly-ringeq, 
minus-poly_wf, 
itermSubtract_wf, 
itermMinus_wf, 
ring_term_value_add_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_sub_lemma, 
rng_plus_wf, 
rng_minus_wf, 
ringeq_int_terms_transitivity, 
itermMinus_functionality_wrt_ringeq, 
mul-ipoly-ringeq, 
mul_ipoly_wf, 
itermMultiply_wf, 
mul-ipoly_wf, 
mul_poly-sq, 
itermMultiply_functionality_wrt_ringeq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
independent_functionElimination, 
intEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
int_eqReduceFalseSq, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}r:CRng.  \mforall{}t:int\_term().    ipolynomial-term(int\_term\_to\_ipoly(t))  \mequiv{}  t
Date html generated:
2018_05_21-PM-03_17_24
Last ObjectModification:
2018_05_19-AM-08_08_35
Theory : rings_1
Home
Index