Nuprl Lemma : mul-ipoly_wf

[p,q:iPolynomial()].  (mul-ipoly(p;q) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  mul-ipoly: mul-ipoly(p;q) iPolynomial: iPolynomial() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nil: [] select: L[n] assert: b bnot: ¬bb sq_type: SQType(T) it: unit: Unit bool: 𝔹 less_than: a < b nat: exists: x:A. B[x] true: True less_than': less_than'(a;b) subtype_rel: A ⊆B subtract: m false: False rev_implies:  Q not: ¬A iff: ⇐⇒ Q decidable: Dec(P) le: A ≤ B uiff: uiff(P;Q) bfalse: ff so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top cons: [a b] btrue: tt ifthenelse: if then else fi  or: P ∨ Q has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall int_nzero: -o prop: iMonomial: iMonomial() so_apply: x[s] all: x:A. B[x] guard: {T} squash: T and: P ∧ Q lelt: i ≤ j < k implies:  Q sq_stable: SqStable(P) int_seg: {i..j-} so_lambda: λ2x.t[x] iPolynomial: iPolynomial() uimplies: supposing a mul-ipoly: mul-ipoly(p;q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  less_than_irreflexivity less_than_transitivity1 base_wf stuck-spread length_of_nil_lemma mul-mono-poly_wf list_accum_wf equal-wf-T-base assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_null eqtt_to_assert bool_wf null_wf nat_properties int_seg_properties add-subtract-cancel le-add-cancel not-lt-2 decidable__lt select-cons-tl true_wf squash_wf add-swap lelt_wf equal_wf int_subtype_base le_wf set_subtype_base nat_wf length_wf_nat non_neg_length length_of_cons_lemma le-add-cancel2 add-zero add_functionality_wrt_le add-commutes zero-add minus-one-mul-top add-associates minus-one-mul minus-add condition-implies-le not-le-2 false_wf subtract_wf decidable__le cons_wf add-member-int_seg2 nil_wf spread_cons_lemma null_cons_lemma product_subtype_list null_nil_lemma list-cases evalall-reduce int-valueall-type nequal_wf subtype_rel_self sorted_wf int_nzero_wf product-valueall-type list-valueall-type le_weakening2 less_than_transitivity2 sq_stable__le select_wf imonomial-less_wf length_wf int_seg_wf all_wf iMonomial_wf list_wf set-valueall-type iPolynomial_wf valueall-type-has-valueall
Rules used in proof :  cumulativity instantiate equalityElimination hyp_replacement sqequalIntensionalEquality dependent_pairFormation applyEquality minusEquality addEquality independent_pairFormation dependent_set_memberEquality equalitySymmetry equalityTransitivity axiomEquality voidEquality voidElimination isect_memberEquality hypothesis_subsumption promote_hyp unionElimination callbyvalueReduce lambdaFormation intEquality setEquality dependent_functionElimination imageElimination baseClosed imageMemberEquality productElimination independent_functionElimination rename setElimination because_Cache hypothesisEquality natural_numberEquality lambdaEquality independent_isectElimination hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[p,q:iPolynomial()].    (mul-ipoly(p;q)  \mmember{}  iPolynomial())



Date html generated: 2017_04_14-AM-08_59_23
Last ObjectModification: 2017_04_12-PM-05_21_56

Theory : omega


Home Index