Nuprl Lemma : mul-ipoly_wf
∀[p,q:iPolynomial()].  (mul-ipoly(p;q) ∈ iPolynomial())
Proof
Definitions occuring in Statement : 
mul-ipoly: mul-ipoly(p;q)
, 
iPolynomial: iPolynomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
nil: []
, 
select: L[n]
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
less_than: a < b
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
true: True
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
cons: [a / b]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
or: P ∨ Q
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
iMonomial: iMonomial()
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
squash: ↓T
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
iPolynomial: iPolynomial()
, 
uimplies: b supposing a
, 
mul-ipoly: mul-ipoly(p;q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
less_than_irreflexivity, 
less_than_transitivity1, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
mul-mono-poly_wf, 
list_accum_wf, 
equal-wf-T-base, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_null, 
eqtt_to_assert, 
bool_wf, 
null_wf, 
nat_properties, 
int_seg_properties, 
add-subtract-cancel, 
le-add-cancel, 
not-lt-2, 
decidable__lt, 
select-cons-tl, 
true_wf, 
squash_wf, 
add-swap, 
lelt_wf, 
equal_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
nat_wf, 
length_wf_nat, 
non_neg_length, 
length_of_cons_lemma, 
le-add-cancel2, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
minus-one-mul-top, 
add-associates, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
false_wf, 
subtract_wf, 
decidable__le, 
cons_wf, 
add-member-int_seg2, 
nil_wf, 
spread_cons_lemma, 
null_cons_lemma, 
product_subtype_list, 
null_nil_lemma, 
list-cases, 
evalall-reduce, 
int-valueall-type, 
nequal_wf, 
subtype_rel_self, 
sorted_wf, 
int_nzero_wf, 
product-valueall-type, 
list-valueall-type, 
le_weakening2, 
less_than_transitivity2, 
sq_stable__le, 
select_wf, 
imonomial-less_wf, 
length_wf, 
int_seg_wf, 
all_wf, 
iMonomial_wf, 
list_wf, 
set-valueall-type, 
iPolynomial_wf, 
valueall-type-has-valueall
Rules used in proof : 
cumulativity, 
instantiate, 
equalityElimination, 
hyp_replacement, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
applyEquality, 
minusEquality, 
addEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
callbyvalueReduce, 
lambdaFormation, 
intEquality, 
setEquality, 
dependent_functionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
productElimination, 
independent_functionElimination, 
rename, 
setElimination, 
because_Cache, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality, 
independent_isectElimination, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[p,q:iPolynomial()].    (mul-ipoly(p;q)  \mmember{}  iPolynomial())
Date html generated:
2017_04_14-AM-08_59_23
Last ObjectModification:
2017_04_12-PM-05_21_56
Theory : omega
Home
Index