Nuprl Lemma : mul-mono-poly_wf

[m:iMonomial()]. ∀[p:iPolynomial()].  (mul-mono-poly(m;p) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  mul-mono-poly: mul-mono-poly(m;p) iPolynomial: iPolynomial() iMonomial: iMonomial() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iPolynomial: iPolynomial() all: x:A. B[x] int_seg: {i..j-} so_lambda: λ2x.t[x] uimplies: supposing a sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} so_apply: x[s] prop: mul-mono-poly: mul-mono-poly(m;p) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] false: False exists: x:A. B[x] subtype_rel: A ⊆B nat: le: A ≤ B uiff: uiff(P;Q) subtract: m nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True not: ¬A decidable: Dec(P) or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q iMonomial: iMonomial() int_nzero: -o callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) sq_type: SQType(T) cons: [a b] ge: i ≥  imonomial-less: imonomial-less(m1;m2) pi2: snd(t) imonomial-le: imonomial-le(m1;m2) mul-monomials: mul-monomials(m1;m2) cand: c∧ B rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  mul-mono-poly_wf1 int_seg_wf length_wf iMonomial_wf all_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 iPolynomial_wf list_induction list_wf length_of_nil_lemma stuck-spread base_wf list_ind_nil_lemma length_of_cons_lemma list_ind_cons_lemma less_than_irreflexivity less_than_transitivity1 cons_wf non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base equal_wf add-commutes less-iff-le add_functionality_wrt_le subtract_wf le_reflexive add-associates minus-add minus-one-mul one-mul add-swap add-mul-special two-mul mul-distributes-right zero-add zero-mul add-zero not-lt-2 omega-shadow less_than_wf mul-distributes mul-associates mul-commutes minus-one-mul-top int_seg_properties nat_properties decidable__lt add-subtract-cancel le-add-cancel select-cons-tl true_wf squash_wf lelt_wf le-add-cancel2 condition-implies-le not-le-2 false_wf decidable__le add-member-int_seg2 valueall-type-has-valueall product-valueall-type int_nzero_wf sorted_wf subtype_rel_self set-valueall-type nequal_wf int-valueall-type list-valueall-type mul-monomials_wf evalall-reduce decidable__equal_int subtype_base_sq select_cons_tl iff_weakening_equal minus-zero not-equal-2 not-equal-implies-less le-add-cancel-alt minus-minus list-cases product_subtype_list value-type-has-value int-value-type list-value-type merge-int-accum_wf merge-int-accum-sq equal-wf-base merge-int-one-one intlex_wf merge-int_wf assert_functionality_wrt_uiff merge-int-comm merge-int-lex le_antisymmetry_iff imonomial-less-transitive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality extract_by_obid isectElimination hypothesisEquality hypothesis lambdaFormation natural_numberEquality sqequalRule lambdaEquality because_Cache independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality voidElimination voidEquality addEquality dependent_pairFormation sqequalIntensionalEquality applyEquality intEquality promote_hyp multiplyEquality minusEquality independent_pairFormation unionElimination hyp_replacement setEquality callbyvalueReduce instantiate cumulativity universeEquality hypothesis_subsumption baseApply closedConclusion

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iPolynomial()].    (mul-mono-poly(m;p)  \mmember{}  iPolynomial())



Date html generated: 2017_09_29-PM-05_53_30
Last ObjectModification: 2017_07_26-PM-01_42_47

Theory : omega


Home Index