Nuprl Lemma : mul-mono-poly_wf
∀[m:iMonomial()]. ∀[p:iPolynomial()].  (mul-mono-poly(m;p) ∈ iPolynomial())
Proof
Definitions occuring in Statement : 
mul-mono-poly: mul-mono-poly(m;p)
, 
iPolynomial: iPolynomial()
, 
iMonomial: iMonomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iPolynomial: iPolynomial()
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
guard: {T}
, 
so_apply: x[s]
, 
prop: ℙ
, 
mul-mono-poly: mul-mono-poly(m;p)
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
false: False
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
sq_type: SQType(T)
, 
cons: [a / b]
, 
ge: i ≥ j 
, 
imonomial-less: imonomial-less(m1;m2)
, 
pi2: snd(t)
, 
imonomial-le: imonomial-le(m1;m2)
, 
mul-monomials: mul-monomials(m1;m2)
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
mul-mono-poly_wf1, 
int_seg_wf, 
length_wf, 
iMonomial_wf, 
all_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
iPolynomial_wf, 
list_induction, 
list_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
less_than_irreflexivity, 
less_than_transitivity1, 
cons_wf, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
equal_wf, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
add-associates, 
minus-add, 
minus-one-mul, 
one-mul, 
add-swap, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-add, 
zero-mul, 
add-zero, 
not-lt-2, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
mul-associates, 
mul-commutes, 
minus-one-mul-top, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
add-subtract-cancel, 
le-add-cancel, 
select-cons-tl, 
true_wf, 
squash_wf, 
lelt_wf, 
le-add-cancel2, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
add-member-int_seg2, 
valueall-type-has-valueall, 
product-valueall-type, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
set-valueall-type, 
nequal_wf, 
int-valueall-type, 
list-valueall-type, 
mul-monomials_wf, 
evalall-reduce, 
decidable__equal_int, 
subtype_base_sq, 
select_cons_tl, 
iff_weakening_equal, 
minus-zero, 
not-equal-2, 
not-equal-implies-less, 
le-add-cancel-alt, 
minus-minus, 
list-cases, 
product_subtype_list, 
value-type-has-value, 
int-value-type, 
list-value-type, 
merge-int-accum_wf, 
merge-int-accum-sq, 
equal-wf-base, 
merge-int-one-one, 
intlex_wf, 
merge-int_wf, 
assert_functionality_wrt_uiff, 
merge-int-comm, 
merge-int-lex, 
le_antisymmetry_iff, 
imonomial-less-transitive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
voidElimination, 
voidEquality, 
addEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyEquality, 
intEquality, 
promote_hyp, 
multiplyEquality, 
minusEquality, 
independent_pairFormation, 
unionElimination, 
hyp_replacement, 
setEquality, 
callbyvalueReduce, 
instantiate, 
cumulativity, 
universeEquality, 
hypothesis_subsumption, 
baseApply, 
closedConclusion
Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iPolynomial()].    (mul-mono-poly(m;p)  \mmember{}  iPolynomial())
Date html generated:
2017_09_29-PM-05_53_30
Last ObjectModification:
2017_07_26-PM-01_42_47
Theory : omega
Home
Index