Nuprl Lemma : imonomial-less-transitive
∀[m1,m2,m3:iMonomial()].  (imonomial-less(m1;m3)) supposing (imonomial-less(m2;m3) and imonomial-less(m1;m2))
Proof
Definitions occuring in Statement : 
imonomial-less: imonomial-less(m1;m2), 
iMonomial: iMonomial(), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
imonomial-less: imonomial-less(m1;m2), 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
iMonomial: iMonomial(), 
pi2: snd(t), 
prop: ℙ, 
uiff: uiff(P;Q), 
imonomial-le: imonomial-le(m1;m2), 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
equal_wf, 
list_wf, 
assert_witness, 
imonomial-le_wf, 
imonomial-less_wf, 
iMonomial_wf, 
eqtt_to_assert, 
subtype_base_sq, 
list_subtype_base, 
int_subtype_base, 
equal-wf-base, 
set_subtype_base, 
sorted_wf, 
subtype_rel_self, 
intlex-antisym, 
intlex-transitive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
independent_isectElimination, 
lambdaFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
applyEquality
Latex:
\mforall{}[m1,m2,m3:iMonomial()].
    (imonomial-less(m1;m3))  supposing  (imonomial-less(m2;m3)  and  imonomial-less(m1;m2))
Date html generated:
2017_04_14-AM-08_57_39
Last ObjectModification:
2017_02_27-PM-03_40_48
Theory : omega
Home
Index