Nuprl Lemma : int_term-induction
∀[P:int_term() ⟶ ℙ]
  ((∀const:ℤ. P["const"])
  
⇒ (∀var:ℤ. P[vvar])
  
⇒ (∀left,right:int_term().  (P[left] 
⇒ P[right] 
⇒ P[left (+) right]))
  
⇒ (∀left,right:int_term().  (P[left] 
⇒ P[right] 
⇒ P[left (-) right]))
  
⇒ (∀left,right:int_term().  (P[left] 
⇒ P[right] 
⇒ P[left (*) right]))
  
⇒ (∀num:int_term(). (P[num] 
⇒ P["-"num]))
  
⇒ {∀v:int_term(). P[v]})
Proof
Definitions occuring in Statement : 
itermMinus: "-"num
, 
itermMultiply: left (*) right
, 
itermSubtract: left (-) right
, 
itermAdd: left (+) right
, 
itermVar: vvar
, 
itermConstant: "const"
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
ext-eq: A ≡ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
itermConstant: "const"
, 
int_term_size: int_term_size(p)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
itermVar: vvar
, 
itermAdd: left (+) right
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
itermSubtract: left (-) right
, 
itermMultiply: left (*) right
, 
itermMinus: "-"num
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
uniform-comp-nat-induction, 
all_wf, 
int_term_wf, 
isect_wf, 
le_wf, 
int_term_size_wf, 
nat_wf, 
less_than'_wf, 
int_term-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
set_subtype_base, 
int_subtype_base, 
add-is-int-iff, 
nat_properties, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
le_reflexive, 
itermMinus_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
one-mul, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
mul-commutes, 
mul-associates, 
mul-swap, 
minus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
functionExtensionality, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_pairFormation, 
independent_pairFormation, 
sqequalIntensionalEquality, 
intEquality, 
natural_numberEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
functionEquality, 
universeEquality, 
multiplyEquality, 
imageMemberEquality
Latex:
\mforall{}[P:int\_term()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}const:\mBbbZ{}.  P["const"])
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  P[vvar])
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  (+)  right]))
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  (-)  right]))
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  (*)  right]))
    {}\mRightarrow{}  (\mforall{}num:int\_term().  (P[num]  {}\mRightarrow{}  P["-"num]))
    {}\mRightarrow{}  \{\mforall{}v:int\_term().  P[v]\})
Date html generated:
2017_04_14-AM-08_57_23
Last ObjectModification:
2017_02_27-PM-03_41_26
Theory : omega
Home
Index