Nuprl Lemma : mul_poly-sq

[p,q:iMonomial() List].  (mul_ipoly(p;q) mul-ipoly(p;q))


Proof




Definitions occuring in Statement :  mul_ipoly: mul_ipoly(p;q) mul-ipoly: mul-ipoly(p;q) iMonomial: iMonomial() list: List uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b mul-ipoly: mul-ipoly(p;q) mul_ipoly: mul_ipoly(p;q) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt has-value: (a)↓ iMonomial: iMonomial() int_nzero: -o has-valueall: has-valueall(a) bfalse: ff add_ipoly: add_ipoly(p;q)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf list_wf iMonomial_wf equal-wf-T-base nat_wf colength_wf_list list-cases product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base null_nil_lemma value-type-has-value list-value-type valueall-type-has-valueall list-valueall-type product-valueall-type int_nzero_wf sorted_wf subtype_rel_self set-valueall-type nequal_wf int-valueall-type cons_wf evalall-reduce null_cons_lemma add-ipoly-prepend_wf nil_wf cbv_list_accum-is-list_accum mul-mono-poly_wf1 eager-accum-list_accum add-ipoly_wf1 list_accum_wf squash_wf true_wf add_ipoly-sq list_subtype_base product_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination voidEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality equalityTransitivity equalitySymmetry intEquality instantiate cumulativity callbyvalueReduce sqleReflexivity setEquality functionEquality universeEquality

Latex:
\mforall{}[p,q:iMonomial()  List].    (mul\_ipoly(p;q)  \msim{}  mul-ipoly(p;q))



Date html generated: 2017_09_29-PM-05_53_48
Last ObjectModification: 2017_05_04-PM-03_44_13

Theory : omega


Home Index