Nuprl Lemma : add-ipoly_wf1
∀[p,q:iMonomial() List].  (add-ipoly(p;q) ∈ iMonomial() List)
Proof
Definitions occuring in Statement : 
add-ipoly: add-ipoly(p;q)
, 
iMonomial: iMonomial()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
add-ipoly: add-ipoly(p;q)
, 
has-value: (a)↓
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
subtract: n - m
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
, 
assert: ↑b
, 
has-valueall: has-valueall(a)
, 
callbyvalueall: callbyvalueall, 
int_nzero: ℤ-o
, 
iMonomial: iMonomial()
, 
nequal: a ≠ b ∈ T 
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
imonomial-le: imonomial-le(m1;m2)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
decidable: Dec(P)
, 
istype: istype(T)
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
nat_wf, 
colength_wf_list, 
iMonomial_wf, 
list_wf, 
list-cases, 
value-type-has-value, 
list-value-type, 
nil_wf, 
null_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
istype-void, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
istype-int, 
add-zero, 
zero-add, 
le-add-cancel, 
int_subtype_base, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
add-commutes, 
add-swap, 
cons_wf, 
null_cons_lemma, 
imonomial-le_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
evalall-reduce, 
int-valueall-type, 
nequal_wf, 
set-valueall-type, 
subtype_rel_self, 
sorted_wf, 
int_nzero_wf, 
product-valueall-type, 
list-valueall-type, 
valueall-type-has-valueall, 
equal_wf, 
int-value-type, 
minus-minus, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :equalityIsType3, 
applyEquality, 
unionElimination, 
callbyvalueReduce, 
voidEquality, 
because_Cache, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
Error :equalityIsType4, 
Error :equalityIsType1, 
instantiate, 
cumulativity, 
intEquality, 
Error :dependent_set_memberEquality_alt, 
minusEquality, 
equalityElimination, 
Error :dependent_pairFormation_alt, 
lambdaFormation, 
setEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
independent_pairEquality, 
int_eqEquality, 
independent_pairFormation, 
isect_memberEquality
Latex:
\mforall{}[p,q:iMonomial()  List].    (add-ipoly(p;q)  \mmember{}  iMonomial()  List)
Date html generated:
2019_06_20-PM-00_45_10
Last ObjectModification:
2018_10_02-PM-11_35_52
Theory : omega
Home
Index