Nuprl Lemma : add-ipoly_wf1

[p,q:iMonomial() List].  (add-ipoly(p;q) ∈ iMonomial() List)


Proof




Definitions occuring in Statement :  add-ipoly: add-ipoly(p;q) iMonomial: iMonomial() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q add-ipoly: add-ipoly(p;q) has-value: (a)↓ ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b subtract: m bfalse: ff bool: 𝔹 unit: Unit exists: x:A. B[x] bnot: ¬bb assert: b has-valueall: has-valueall(a) callbyvalueall: callbyvalueall int_nzero: -o iMonomial: iMonomial() nequal: a ≠ b ∈  pi1: fst(t) pi2: snd(t) imonomial-le: imonomial-le(m1;m2) rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) istype: istype(T)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf nat_wf colength_wf_list iMonomial_wf list_wf list-cases value-type-has-value list-value-type nil_wf null_nil_lemma product_subtype_list spread_cons_lemma istype-void sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates istype-int add-zero zero-add le-add-cancel int_subtype_base subtract-1-ge-0 subtype_base_sq set_subtype_base le_wf add-commutes add-swap cons_wf null_cons_lemma imonomial-le_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot evalall-reduce int-valueall-type nequal_wf set-valueall-type subtype_rel_self sorted_wf int_nzero_wf product-valueall-type list-valueall-type valueall-type-has-valueall equal_wf int-value-type minus-minus less-iff-le not-ge-2 subtract_wf minus-one-mul-top minus-one-mul minus-add condition-implies-le not-le-2 false_wf decidable__le equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :equalityIsType3,  applyEquality unionElimination callbyvalueReduce voidEquality because_Cache promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality Error :equalityIsType4,  Error :equalityIsType1,  instantiate cumulativity intEquality Error :dependent_set_memberEquality_alt,  minusEquality equalityElimination Error :dependent_pairFormation_alt,  lambdaFormation setEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality independent_pairEquality int_eqEquality independent_pairFormation isect_memberEquality

Latex:
\mforall{}[p,q:iMonomial()  List].    (add-ipoly(p;q)  \mmember{}  iMonomial()  List)



Date html generated: 2019_06_20-PM-00_45_10
Last ObjectModification: 2018_10_02-PM-11_35_52

Theory : omega


Home Index