Nuprl Lemma : ring_triv

[r:Rng]. ∀[a:|r|]. (a 0 ∈ |r|) supposing 0 ∈ |r|


Proof




Definitions occuring in Statement :  rng: Rng rng_one: 1 rng_zero: 0 rng_car: |r| uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rng: Rng prop: squash: T and: P ∧ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  rng_car_wf equal_wf rng_one_wf rng_zero_wf rng_wf infix_ap_wf rng_times_wf squash_wf true_wf rng_times_zero rng_times_one iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality applyEquality lambdaEquality imageElimination universeEquality productElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[r:Rng].  \mforall{}[a:|r|].  (a  =  0)  supposing  1  =  0



Date html generated: 2017_10_01-AM-08_17_31
Last ObjectModification: 2017_02_28-PM-02_02_39

Theory : rings_1


Home Index