Nuprl Lemma : ring_triv
∀[r:Rng]. ∀[a:|r|]. (a = 0 ∈ |r|) supposing 1 = 0 ∈ |r|
Proof
Definitions occuring in Statement : 
rng: Rng
, 
rng_one: 1
, 
rng_zero: 0
, 
rng_car: |r|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rng: Rng
, 
prop: ℙ
, 
squash: ↓T
, 
and: P ∧ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rng_car_wf, 
equal_wf, 
rng_one_wf, 
rng_zero_wf, 
rng_wf, 
infix_ap_wf, 
rng_times_wf, 
squash_wf, 
true_wf, 
rng_times_zero, 
rng_times_one, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[r:Rng].  \mforall{}[a:|r|].  (a  =  0)  supposing  1  =  0
Date html generated:
2017_10_01-AM-08_17_31
Last ObjectModification:
2017_02_28-PM-02_02_39
Theory : rings_1
Home
Index