Nuprl Lemma : rng_nat_op_one

[r:Rng]. ∀[e:|r|].  ((1 ⋅e) e ∈ |r|)


Proof




Definitions occuring in Statement :  rng_nat_op: n ⋅e rng: Rng rng_car: |r| uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: rng_nat_op: n ⋅e add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng: Rng
Lemmas referenced :  mon_nat_op_one add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf rng_car_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality setElimination rename setEquality cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[e:|r|].    ((1  \mcdot{}r  e)  =  e)



Date html generated: 2016_05_15-PM-00_27_22
Last ObjectModification: 2015_12_26-PM-11_58_57

Theory : rings_1


Home Index