Nuprl Lemma : rng_sum_shift

[r:Rng]. ∀[a,b:ℤ].
  ∀[E:{a..b-} ⟶ |r|]. ∀[k:ℤ].  ((Σ(r) a ≤ j < b. E[j]) (r) k ≤ j < k. E[j k]) ∈ |r|) supposing a ≤ b


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_car: |r| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: rng_sum: rng_sum add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) uimplies: supposing a rng: Rng
Lemmas referenced :  mon_itop_shift add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf int_seg_wf rng_car_wf le_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality setElimination rename setEquality cumulativity isect_memberEquality axiomEquality intEquality functionEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].  \mforall{}[k:\mBbbZ{}].    ((\mSigma{}(r)  a  \mleq{}  j  <  b.  E[j])  =  (\mSigma{}(r)  a  +  k  \mleq{}  j  <  b  +  k.  E[j  -  k])) 
    supposing  a  \mleq{}  b



Date html generated: 2016_05_15-PM-00_28_12
Last ObjectModification: 2015_12_26-PM-11_58_29

Theory : rings_1


Home Index