Nuprl Lemma : rng_sum_single
∀[r:Rng]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |r|]. ((Σ(r) i ≤ k < j. E[k]) = E[i] ∈ |r|) supposing j = (i + 1) ∈ ℤ
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
true: True
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rng: Rng
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rng_plus_zero, 
lelt_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
rng_plus_wf, 
rng_wf, 
int_subtype_base, 
equal-wf-base, 
rng_car_wf, 
int_seg_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
rng_sum_unroll_lo, 
equal_wf, 
squash_wf, 
true_wf, 
rng_sum_unroll_base, 
iff_weakening_equal
Rules used in proof : 
productElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
functionExtensionality, 
because_Cache, 
baseClosed, 
closedConclusion, 
baseApply, 
applyEquality, 
axiomEquality, 
rename, 
setElimination, 
functionEquality, 
equalityTransitivity, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
natural_numberEquality, 
unionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |r|].  ((\mSigma{}(r)  i  \mleq{}  k  <  j.  E[k])  =  E[i])  supposing  j  =  (i  +  1)
Date html generated:
2018_05_21-PM-03_15_01
Last ObjectModification:
2017_12_12-AM-11_39_54
Theory : rings_1
Home
Index