Nuprl Lemma : rng_sum_single

[r:Rng]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |r|]. ((Σ(r) i ≤ k < j. E[k]) E[i] ∈ |r|) supposing (i 1) ∈ ℤ


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_car: |r| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  true: True lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] subtype_rel: A ⊆B rng: Rng prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] squash: T infix_ap: y so_lambda: λ2x.t[x] guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rng_plus_zero lelt_wf int_formula_prop_le_lemma intformle_wf decidable__le rng_plus_wf rng_wf int_subtype_base equal-wf-base rng_car_wf int_seg_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf intformeq_wf itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt rng_sum_unroll_lo equal_wf squash_wf true_wf rng_sum_unroll_base iff_weakening_equal
Rules used in proof :  productElimination equalitySymmetry dependent_set_memberEquality functionExtensionality because_Cache baseClosed closedConclusion baseApply applyEquality axiomEquality rename setElimination functionEquality equalityTransitivity independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation natural_numberEquality unionElimination dependent_functionElimination independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |r|].  ((\mSigma{}(r)  i  \mleq{}  k  <  j.  E[k])  =  E[i])  supposing  j  =  (i  +  1)



Date html generated: 2018_05_21-PM-03_15_01
Last ObjectModification: 2017_12_12-AM-11_39_54

Theory : rings_1


Home Index