Nuprl Lemma : rng_when_of_zero

[r:Rng]. ∀[b:𝔹].  ((when b. 0) 0 ∈ |r|)


Proof




Definitions occuring in Statement :  rng_when: rng_when rng: Rng rng_zero: 0 rng_car: |r| bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: rng_when: rng_when add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_id: e pi2: snd(t)
Lemmas referenced :  mon_when_of_id add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf bool_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality setElimination rename setEquality cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[b:\mBbbB{}].    ((when  b.  0)  =  0)



Date html generated: 2016_05_15-PM-00_29_06
Last ObjectModification: 2015_12_26-PM-11_58_23

Theory : rings_1


Home Index