Nuprl Lemma : zero_ideal_wf
∀[r:CRng]. ((0r) ∈ Ideal(r){i})
Proof
Definitions occuring in Statement : 
zero_ideal: (0r)
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
zero_ideal: (0r)
, 
ideal: Ideal(r){i}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
ideal_p: S Ideal of R
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subgrp_p: s SubGrp of g
, 
add_grp_of_rng: r↓+gp
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
grp_car: |g|
, 
grp_inv: ~
, 
grp_op: *
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
Lemmas referenced : 
crng_wf, 
equal_wf, 
rng_car_wf, 
rng_zero_wf, 
squash_wf, 
true_wf, 
rng_minus_zero, 
iff_weakening_equal, 
rng_minus_wf, 
rng_plus_zero, 
rng_plus_wf, 
member_wf, 
rng_times_zero, 
rng_times_wf, 
ideal_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
dependent_set_memberEquality, 
lambdaEquality, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
independent_pairFormation, 
lambdaFormation, 
applyEquality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
instantiate, 
functionExtensionality
Latex:
\mforall{}[r:CRng].  ((0r)  \mmember{}  Ideal(r)\{i\})
Date html generated:
2017_10_01-AM-08_17_42
Last ObjectModification:
2017_02_28-PM-02_03_01
Theory : rings_1
Home
Index