Nuprl Lemma : qoset_lt_irrefl
∀[s:QOSet]. ∀[a,b:|s|].  ¬(a = b ∈ |s|) supposing a <s b
Proof
Definitions occuring in Statement : 
qoset: QOSet, 
set_lt: a <p b, 
set_car: |p|, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
qoset: QOSet, 
dset: DSet, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
equal_wf, 
set_car_wf, 
set_lt_wf, 
qoset_wf, 
set_lt_is_sp_of_leq, 
strict_part_irrefl, 
set_leq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b:|s|].    \mneg{}(a  =  b)  supposing  a  <s  b
Date html generated:
2017_10_01-AM-08_13_13
Last ObjectModification:
2017_02_28-PM-01_57_16
Theory : sets_1
Home
Index