Nuprl Lemma : set_lt_is_sp_of_leq
∀[p:PosetSig]. ∀[a,b:|p|].  uiff(a <p b;strict_part(x,y.x ≤ y;a;b))
Proof
Definitions occuring in Statement : 
set_lt: a <p b, 
set_leq: a ≤ b, 
set_car: |p|, 
poset_sig: PosetSig, 
strict_part: strict_part(x,y.R[x; y];a;b), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
strict_part: strict_part(x,y.R[x; y];a;b), 
set_leq: a ≤ b, 
infix_ap: x f y, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
prop: ℙ, 
set_lt: a <p b, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
set_blt: a <b b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
assert_witness, 
set_le_wf, 
set_leq_wf, 
set_lt_wf, 
set_blt_wf, 
strict_part_wf, 
set_car_wf, 
poset_sig_wf, 
and_wf, 
not_wf, 
assert_wf, 
band_wf, 
bnot_wf, 
uiff_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_set_leq, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lemma_by_obid, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
independent_pairFormation, 
lambdaFormation, 
cumulativity, 
addLevel, 
independent_isectElimination, 
impliesFunctionality
Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(a  <p  b;strict\_part(x,y.x  \mleq{}  y;a;b))
Date html generated:
2016_05_15-PM-00_04_22
Last ObjectModification:
2015_12_26-PM-11_28_55
Theory : sets_1
Home
Index