Nuprl Lemma : set_lt_complement
∀[s:LOSet]. ∀[a,b:|s|].  uiff(¬(b <s a);a ≤ b)
Proof
Definitions occuring in Statement : 
loset: LOSet, 
set_lt: a <p b, 
set_leq: a ≤ b, 
set_car: |p|, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
set_leq: a ≤ b, 
infix_ap: x f y, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
implies: P ⇒ Q, 
prop: ℙ, 
not: ¬A, 
false: False, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
uorder: UniformOrder(T;x,y.R[x; y]), 
cand: A c∧ B, 
upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced : 
assert_witness, 
set_le_wf, 
not_wf, 
set_lt_wf, 
set_leq_wf, 
set_car_wf, 
loset_wf, 
set_lt_is_sp_of_leq, 
strict_part_wf, 
uiff_wf, 
ulinorder_lt_neg, 
decidable__set_leq, 
loset_properties, 
poset_properties, 
qoset_properties, 
set_leq_trans, 
upreorder_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lemma_by_obid, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
voidElimination, 
addLevel, 
independent_pairFormation, 
independent_isectElimination, 
lambdaFormation, 
cumulativity, 
dependent_set_memberEquality
Latex:
\mforall{}[s:LOSet].  \mforall{}[a,b:|s|].    uiff(\mneg{}(b  <s  a);a  \mleq{}  b)
Date html generated:
2016_05_15-PM-00_05_37
Last ObjectModification:
2015_12_26-PM-11_27_55
Theory : sets_1
Home
Index