Nuprl Lemma : set_lt_transitivity_1
∀[s:QOSet]. ∀[a,b,c:|s|].  (a <s c) supposing ((b <s c) and (a ≤ b))
Proof
Definitions occuring in Statement : 
qoset: QOSet, 
set_lt: a <p b, 
set_leq: a ≤ b, 
set_car: |p|, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
qoset: QOSet, 
dset: DSet, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
set_lt: a <p b, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
set_leq: a ≤ b, 
infix_ap: x f y, 
guard: {T}
Lemmas referenced : 
set_lt_is_sp_of_leq, 
assert_witness, 
set_blt_wf, 
set_lt_wf, 
set_leq_wf, 
set_car_wf, 
qoset_wf, 
utrans_imp_sp_utrans_a, 
set_le_wf, 
set_leq_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
applyEquality
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b,c:|s|].    (a  <s  c)  supposing  ((b  <s  c)  and  (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-00_04_54
Last ObjectModification:
2015_12_26-PM-11_28_03
Theory : sets_1
Home
Index