Nuprl Lemma : module_eqfun_p
∀[A:Rng]. ∀[m:A-DModule]. ∀[x,y:m.car].  uiff(↑(x m.eq y);x = y ∈ m.car)
Proof
Definitions occuring in Statement : 
dmodule: A-DModule, 
alg_eq: a.eq, 
alg_car: a.car, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
equal: s = t ∈ T, 
rng: Rng
Definitions unfolded in proof : 
dmodule: A-DModule, 
module: A-Module, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
rng: Rng, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
eqfun_p: IsEqFun(T;eq)
Lemmas referenced : 
rng_wf, 
eqfun_p_wf, 
rng_plus_wf, 
bilinear_p_wf, 
alg_act_wf, 
rng_one_wf, 
rng_times_wf, 
action_p_wf, 
comm_wf, 
alg_minus_wf, 
alg_zero_wf, 
alg_plus_wf, 
group_p_wf, 
algebra_sig_wf, 
set_wf, 
alg_car_wf, 
equal_wf, 
assert_witness, 
decidable__assert, 
sq_stable_from_decidable, 
rng_car_wf, 
alg_eq_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
setEquality, 
productEquality, 
lambdaEquality, 
lambdaFormation, 
cumulativity, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A:Rng].  \mforall{}[m:A-DModule].  \mforall{}[x,y:m.car].    uiff(\muparrow{}(x  m.eq  y);x  =  y)
Date html generated:
2016_05_16-AM-07_26_41
Last ObjectModification:
2016_01_16-PM-09_59_58
Theory : algebras_1
Home
Index