Nuprl Lemma : zero_sym_grp
∀p:Sym(0). (p = id_perm() ∈ Sym(0))
Proof
Definitions occuring in Statement : 
sym_grp: Sym(n), 
id_perm: id_perm(), 
all: ∀x:A. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
sym_grp: Sym(n), 
uall: ∀[x:A]. B[x], 
perm: Perm(T), 
prop: ℙ, 
perm_sig: perm_sig(T), 
id_perm: id_perm(), 
mk_perm: mk_perm(f;b), 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
lelt_wf, 
decidable__equal_int, 
int_seg_properties, 
perm_b_wf, 
perm_f_wf, 
inv_funs_wf, 
perm_properties, 
int_seg_wf, 
perm_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
dependent_pairEquality, 
functionExtensionality, 
because_Cache, 
applyEquality, 
independent_pairFormation, 
sqequalRule, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
unionElimination, 
functionEquality
Latex:
\mforall{}p:Sym(0).  (p  =  id\_perm())
Date html generated:
2016_05_16-AM-07_32_10
Last ObjectModification:
2016_01_16-PM-10_06_31
Theory : perms_1
Home
Index