Step
*
1
1
1
2
of Lemma
permr_upto_split
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. ||as|| = ||bs|| ∈ ℤ
7. p : Sym(||as||)
8. ∀i:ℕ||as||. R[as[p.f i];bs[i]]
9. ||as|| = ||(λi:ℕ||as||. as[p.f i])[ℕ||as||]|| ∈ ℤ
⊢ ∃p@0:Sym(||as||). ∀i:ℕ||as||. (as[p@0.f i] = (λi:ℕ||as||. as[p.f i])[ℕ||as||][i] ∈ T)
BY
{ (With p (D 0)
% Auto' loops on 2nd wf goal due to repeatedly
adding properties lemma for hyp 9. A temporary soln
is therefor to thin hyp 9 in this subgoal. %)⋅ }
1
.....wf.....
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. ||as|| = ||bs|| ∈ ℤ
7. p : Sym(||as||)
8. ∀i:ℕ||as||. R[as[p.f i];bs[i]]
9. ||as|| = ||(λi:ℕ||as||. as[p.f i])[ℕ||as||]|| ∈ ℤ
⊢ p ∈ Sym(||as||)
2
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. ||as|| = ||bs|| ∈ ℤ
7. p : Sym(||as||)
8. ∀i:ℕ||as||. R[as[p.f i];bs[i]]
9. ||as|| = ||(λi:ℕ||as||. as[p.f i])[ℕ||as||]|| ∈ ℤ
⊢ ∀i:ℕ||as||. (as[p.f i] = (λi:ℕ||as||. as[p.f i])[ℕ||as||][i] ∈ T)
3
.....wf.....
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. ||as|| = ||bs|| ∈ ℤ
7. p : Sym(||as||)
8. ∀i:ℕ||as||. R[as[p.f i];bs[i]]
9. ||as|| = ||(λi:ℕ||as||. as[p.f i])[ℕ||as||]|| ∈ ℤ
10. p@0 : Sym(||as||)
⊢ istype(∀i:ℕ||as||. (as[p@0.f i] = (λi:ℕ||as||. as[p.f i])[ℕ||as||][i] ∈ T))
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. ||as|| = ||bs||
7. p : Sym(||as||)
8. \mforall{}i:\mBbbN{}||as||. R[as[p.f i];bs[i]]
9. ||as|| = ||(\mlambda{}i:\mBbbN{}||as||. as[p.f i])[\mBbbN{}||as||]||
\mvdash{} \mexists{}p@0:Sym(||as||). \mforall{}i:\mBbbN{}||as||. (as[p@0.f i] = (\mlambda{}i:\mBbbN{}||as||. as[p.f i])[\mBbbN{}||as||][i])
By
Latex:
(With p (D 0)
\% Auto' loops on 2nd wf goal due to repeatedly
adding properties lemma for hyp 9. A temporary soln
is therefor to thin hyp 9 in this subgoal. \%)\mcdot{}
Home
Index