Step
*
2
1
of Lemma
permr_upto_split
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. cs : T List
7. as ≡(T) cs
8. cs = bs upto {x,y.R[x;y]}
⊢ as ≡ bs upto x,y.R[x;y]
BY
{ ((((D 8 THEN D 7) THEN D 8) THEN D 0) THEN Try TRIVIAL) }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. cs : T List
7. ||as|| = ||cs|| ∈ ℤ
8. p : Sym(||as||)
9. ∀i:ℕ||as||. (as[p.f i] = cs[i] ∈ T)
10. ||cs|| = ||bs|| ∈ ℤ
11. ∀i:ℕ||cs||. R[cs[i];bs[i]]
12. ||as|| = ||bs|| ∈ ℤ
⊢ ∃p:Sym(||as||). ∀i:ℕ||as||. R[as[p.f i];bs[i]]
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. EquivRel(T;x,y.R[x;y])
4. as : T List
5. bs : T List
6. cs : T List
7. as \mequiv{}(T) cs
8. cs = bs upto \{x,y.R[x;y]\}
\mvdash{} as \mequiv{} bs upto x,y.R[x;y]
By
Latex:
((((D 8 THEN D 7) THEN D 8) THEN D 0) THEN Try TRIVIAL)
Home
Index