Nuprl Lemma : oal_lv_neg
∀s:LOSet. ∀g:AbDGrp. ∀ps:|oal(s;g)|.  ((¬(ps = 00 ∈ |oal(s;g)|)) ⇒ (lv(--ps) = (~ lv(ps)) ∈ |g|))
Proof
Definitions occuring in Statement : 
oal_lv: lv(ps), 
oal_neg: --ps, 
oal_nil: 00, 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
apply: f a, 
equal: s = t ∈ T, 
abdgrp: AbDGrp, 
grp_inv: ~, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
mon: Mon, 
subtype_rel: A ⊆r B, 
abdmonoid: AbDMon, 
dmon: DMon, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
dset: DSet, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
grp_car_wf, 
lookup_oal_lk, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
sq_stable__comm, 
oal_neg_wf2, 
subtype_rel_self, 
iff_weakening_equal, 
oal_nil_wf, 
istype-void, 
set_car_wf, 
oalist_wf, 
abdgrp_wf, 
loset_wf, 
oal_merge_wf2, 
oal_neg_left_inv, 
oal_nil_ident_l, 
lookup_wf, 
list_wf, 
poset_sig_wf, 
oal_lk_neg, 
oal_neg_wf, 
oal_lk_wf, 
lookup_oal_neg, 
grp_subtype_igrp, 
abgrp_subtype_grp, 
abdgrp_subtype_abgrp, 
subtype_rel_transitivity, 
abgrp_wf, 
grp_wf, 
igrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
sqequalRule, 
setEquality, 
cumulativity, 
because_Cache, 
setIsType, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
productElimination, 
functionIsType, 
equalityIstype, 
applyLambdaEquality, 
voidElimination, 
productEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (lv(--ps)  =  (\msim{}  lv(ps))))
Date html generated:
2019_10_16-PM-01_08_22
Last ObjectModification:
2018_11_27-AM-10_31_05
Theory : polynom_2
Home
Index