Nuprl Lemma : lookup_oal_lk
∀s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  ((¬(ps = 00 ∈ |oal(s;g)|)) ⇒ ((ps[lk(ps)]) = lv(ps) ∈ |g|))
Proof
Definitions occuring in Statement : 
oal_lv: lv(ps), 
oal_lk: lk(ps), 
lookup: as[k], 
oal_nil: 00, 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
so_apply: x[s], 
guard: {T}, 
oal_nil: 00, 
false: False, 
not: ¬A, 
top: Top, 
oal_lk: lk(ps), 
oal_lv: lv(ps), 
pi2: snd(t), 
oal_cons_pr: oal_cons_pr(x;y;ws), 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
oalist_cases_a, 
not_wf, 
equal_wf, 
set_car_wf, 
oalist_wf, 
dset_wf, 
oal_nil_wf, 
grp_car_wf, 
lookup_wf, 
grp_id_wf, 
oal_lk_wf, 
oal_lv_wf, 
abdmonoid_wf, 
loset_wf, 
lookup_cons_pr_lemma, 
reduce_hd_cons_lemma, 
oal_cons_pr_wf, 
assert_wf, 
before_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
pi1_wf_top, 
set_eq_wf, 
bool_wf, 
equal-wf-T-base, 
member_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  ((ps[lk(ps)])  =  lv(ps)))
 Date html generated: 
2019_10_16-PM-01_08_18
 Last ObjectModification: 
2018_08_22-AM-11_39_53
Theory : polynom_2
Home
Index