Step
*
1
of Lemma
omral_alg_umap_is_hom
1. g : OCMon
2. g ∈ DMon
⊢ ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:MonHom(g,n↓rg↓xmn).  alg_hom_p(a; omral_alg(g;a); n; alg_umap(n,f))
BY
{ ((AGenRepD ["compound";"basic"]) THENA Auto) }
1
1. g : OCMon
2. g ∈ DMon
3. a : CDRng
4. n : algebra{i:l}(a)
5. f : MonHom(g,n↓rg↓xmn)
6. a1 : omral_alg(g;a).car
7. a2 : omral_alg(g;a).car
⊢ (alg_umap(n,f) (a1 omral_alg(g;a).plus a2)) = ((alg_umap(n,f) a1) n.plus (alg_umap(n,f) a2)) ∈ n.car
2
1. g : OCMon
2. g ∈ DMon
3. a : CDRng
4. n : algebra{i:l}(a)
5. f : MonHom(g,n↓rg↓xmn)
6. u : |a|
7. a@0 : omral_alg(g;a).car
⊢ (alg_umap(n,f) (omral_alg(g;a).act u a@0)) = (n.act u (alg_umap(n,f) a@0)) ∈ n.car
3
1. g : OCMon
2. g ∈ DMon
3. a : CDRng
4. n : algebra{i:l}(a)
5. f : MonHom(g,n↓rg↓xmn)
6. a1 : omral_alg(g;a).car
7. a2 : omral_alg(g;a).car
⊢ (alg_umap(n,f) (a1 omral_alg(g;a).times a2)) = ((alg_umap(n,f) a1) n.times (alg_umap(n,f) a2)) ∈ n.car
4
1. g : OCMon
2. g ∈ DMon
3. a : CDRng
4. n : algebra{i:l}(a)
5. f : MonHom(g,n↓rg↓xmn)
⊢ (alg_umap(n,f) omral_alg(g;a).one) = n.one ∈ n.car
Latex:
Latex:
1.  g  :  OCMon
2.  g  \mmember{}  DMon
\mvdash{}  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:MonHom(g,n\mdownarrow{}rg\mdownarrow{}xmn).
        alg\_hom\_p(a;  omral\_alg(g;a);  n;  alg\_umap(n,f))
By
Latex:
((AGenRepD  ["compound";"basic"])  THENA  Auto)
Home
Index