Nuprl Lemma : natset-seteq-natset
∀n,m:ℕ.  (seteq(natset(n);natset(m)) 
⇐⇒ n = m ∈ ℤ)
Proof
Definitions occuring in Statement : 
natset: natset(n)
, 
seteq: seteq(s1;s2)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
label: ...$L... t
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_weakening_equal, 
subtype_rel_self, 
Set_wf, 
true_wf, 
squash_wf, 
seteq_weakening, 
le_wf, 
int_term_value_constant_lemma, 
itermConstant_wf, 
decidable__le, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_properties, 
natset-subset-natset, 
seteq-iff-setsubset, 
nat_wf, 
equal_wf, 
natset_wf, 
seteq_wf
Rules used in proof : 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
dependent_set_memberEquality, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
promote_hyp, 
because_Cache, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
intEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n,m:\mBbbN{}.    (seteq(natset(n);natset(m))  \mLeftarrow{}{}\mRightarrow{}  n  =  m)
Date html generated:
2018_05_29-PM-01_49_49
Last ObjectModification:
2018_05_25-AM-00_06_58
Theory : constructive!set!theory
Home
Index