Nuprl Lemma : natset-seteq-natset

n,m:ℕ.  (seteq(natset(n);natset(m)) ⇐⇒ m ∈ ℤ)


Proof




Definitions occuring in Statement :  natset: natset(n) seteq: seteq(s1;s2) nat: all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B squash: T true: True label: ...$L... t top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  iff_weakening_equal subtype_rel_self Set_wf true_wf squash_wf seteq_weakening le_wf int_term_value_constant_lemma itermConstant_wf decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int nat_properties natset-subset-natset seteq-iff-setsubset nat_wf equal_wf natset_wf seteq_wf
Rules used in proof :  universeEquality instantiate baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination applyEquality dependent_set_memberEquality sqequalRule voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality dependent_pairFormation approximateComputation independent_isectElimination natural_numberEquality unionElimination promote_hyp because_Cache independent_functionElimination productElimination dependent_functionElimination rename setElimination intEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n,m:\mBbbN{}.    (seteq(natset(n);natset(m))  \mLeftarrow{}{}\mRightarrow{}  n  =  m)



Date html generated: 2018_05_29-PM-01_49_49
Last ObjectModification: 2018_05_25-AM-00_06_58

Theory : constructive!set!theory


Home Index