Nuprl Lemma : csm-Kan-cubical-sigma

[X,Delta:CubicalSet]. ∀[s:Delta ⟶ X]. ∀[A:{X ⊢ _(Kan)}]. ∀[B:{X.Kan-type(A) ⊢ _(Kan)}].
  ((KanΣ B)s KanΣ (A)s (B)(s p;q) ∈ {Delta ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  Kan-cubical-sigma: KanΣ B csm-Kan-cubical-type: (AK)s Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s csm-comp: F cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B csm-Kan-cubical-type: (AK)s Kan-cubical-sigma: KanΣ B Kan-cubical-type: {X ⊢ _(Kan)} Kan-type: Kan-type(Ak) pi1: fst(t) all: x:A. B[x] uimplies: supposing a nameset: nameset(L) Kan_sigma_filler: Kan_sigma_filler(A;B) Kanfiller: filler(x;i;bx) let: let pi2: snd(t) csm-ap: (s)x cc-adjoin-cube: (v;u) cc-snd: q cc-fst: p csm-comp: F csm-adjoin: (s;u) type-cat: TypeCat trans-comp: t1 t2 top: Top so_lambda: λ2x.t[x] so_apply: x[s] compose: g cubical-type-at: A(a) cubical-sigma: Σ B csm-ap-type: (AF)s
Lemmas referenced :  Kan-cubical-type_wf cube-context-adjoin_wf Kan-type_wf cube-set-map_wf cubical-set_wf csm-ap-type_wf cc-snd_wf cc-fst_wf csm-ap-comp-type cubical-term_wf csm-cubical-sigma subtype_rel_self cubical-type_wf list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf subtype_rel_list cubical-type-at_wf ap_mk_nat_trans_lemma istype-void cat_comp_tuple_lemma cubical-sigma_wf Kan_sigma_filler_wf csm-ap_wf csm-A-open-box Kan-cubical-sigma_wf csm-Kan-cubical-type_wf Kan-cubical-type-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType sqequalRule hyp_replacement lambdaEquality equalitySymmetry equalityTransitivity applyEquality cumulativity applyLambdaEquality dependent_pairEquality_alt setElimination rename productElimination dependent_functionElimination instantiate functionIsType natural_numberEquality independent_isectElimination lambdaEquality_alt functionExtensionality isect_memberEquality_alt voidElimination

Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  X].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}].
    ((Kan\mSigma{}  A  B)s  =  Kan\mSigma{}  (A)s  (B)(s  o  p;q))



Date html generated: 2019_11_05-PM-00_31_20
Last ObjectModification: 2018_11_10-PM-03_21_50

Theory : cubical!sets


Home Index