Nuprl Lemma : csm-A-open-box
∀Delta,Gamma:CubicalSet. ∀s:Delta ⟶ Gamma. ∀A:{Gamma ⊢ _}. ∀I:Cname List. ∀alpha:Delta(I). ∀J:nameset(I) List.
∀x:nameset(I). ∀i:ℕ2.
  (A-open-box(Delta;(A)s;I;alpha;J;x;i) ⊆r A-open-box(Gamma;A;I;(s)alpha;J;x;i))
Proof
Definitions occuring in Statement : 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-ap: (s)x, 
I-cube: X(I), 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
nameset: nameset(L), 
coordinate_name: Cname, 
list: T List, 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
uimplies: b supposing a, 
A-face: A-face(X;A;I;alpha), 
nameset: nameset(L), 
top: Top, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L), 
pairwise: (∀x,y∈L.  P[x; y]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
sq_stable: SqStable(P), 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
less_than: a < b, 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
spreadn: spread3, 
cubical-type: {X ⊢ _}, 
csm-ap: (s)x, 
cubical-type-ap-morph: (u a f), 
csm-ap-type: (AF)s, 
pi2: snd(t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
pi1: fst(t), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
A-open-box_wf, 
csm-ap-type_wf, 
int_seg_wf, 
nameset_wf, 
list_wf, 
I-cube_wf, 
coordinate_name_wf, 
cubical-type_wf, 
cube-set-map_wf, 
cubical-set_wf, 
subtype_rel_list, 
A-face_wf, 
csm-ap_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
csm-type-at, 
equal_wf, 
squash_wf, 
true_wf, 
csm-ap-restriction, 
iff_weakening_equal, 
length_wf, 
select_wf, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
A-face-compatible_wf, 
not_wf, 
name-comp_wf, 
name-morph_wf, 
subtype_rel_self, 
subtype_rel_wf, 
list-diff2-sym, 
list-diff2, 
cubical-type-ap-morph_wf, 
cube-set-restriction-comp, 
face-maps-commute, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base, 
subtype_rel_weakening, 
ext-eq_weakening, 
A-adjacent-compatible_wf, 
l_member_wf, 
l_subset_wf, 
all_wf, 
l_exists_wf, 
A-face-name_wf, 
nameset_subtype, 
l_all_wf2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
pairwise_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_isectElimination, 
productElimination, 
dependent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
instantiate, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
productEquality, 
independent_pairFormation, 
promote_hyp, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
addLevel, 
hyp_replacement, 
levelHypothesis, 
applyLambdaEquality, 
cumulativity, 
independent_pairEquality, 
setEquality
Latex:
\mforall{}Delta,Gamma:CubicalSet.  \mforall{}s:Delta  {}\mrightarrow{}  Gamma.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}I:Cname  List.  \mforall{}alpha:Delta(I).
\mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
    (A-open-box(Delta;(A)s;I;alpha;J;x;i)  \msubseteq{}r  A-open-box(Gamma;A;I;(s)alpha;J;x;i))
Date html generated:
2017_10_05-AM-10_22_03
Last ObjectModification:
2017_07_28-AM-11_21_32
Theory : cubical!sets
Home
Index