Nuprl Lemma : face-map_wf2
∀[I:Cname List]. ∀[x:Cname]. ∀[p:ℕ2].  ((x:=p) ∈ name-morph(I;I-[x]))
Proof
Definitions occuring in Statement : 
face-map: (x:=i), 
name-morph: name-morph(I;J), 
cname_deq: CnameDeq, 
coordinate_name: Cname, 
list-diff: as-bs, 
cons: [a / b], 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
l_subset: l_subset(T;as;bs), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
guard: {T}, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nameset: nameset(L)
Lemmas referenced : 
int_seg_wf, 
coordinate_name_wf, 
list_wf, 
l_member_wf, 
cons_member, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
member_singleton, 
or_wf, 
equal_wf, 
and_wf, 
not_wf, 
member-list-diff, 
decidable__equal-coordinate_name, 
face-map_wf, 
nameset_wf, 
name-morph_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
independent_pairFormation, 
impliesFunctionality, 
andLevelFunctionality, 
impliesLevelFunctionality, 
unionElimination, 
inlFormation, 
inrFormation, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:Cname].  \mforall{}[p:\mBbbN{}2].    ((x:=p)  \mmember{}  name-morph(I;I-[x]))
Date html generated:
2016_05_20-AM-09_31_13
Last ObjectModification:
2015_12_28-PM-04_46_17
Theory : cubical!sets
Home
Index