Nuprl Lemma : Kan_sigma_filler_wf
∀X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀B:{X.Kan-type(A) ⊢ _(Kan)}.
  (Kan_sigma_filler(A;B) ∈ {filler:I:(Cname List)
                            ⟶ alpha:X(I)
                            ⟶ J:(nameset(I) List)
                            ⟶ x:nameset(I)
                            ⟶ i:ℕ2
                            ⟶ A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)
                            ⟶ Σ Kan-type(A) Kan-type(B)(alpha)| 
                            Kan-A-filler(X;Σ Kan-type(A) Kan-type(B);filler)} )
Proof
Definitions occuring in Statement : 
Kan_sigma_filler: Kan_sigma_filler(A;B)
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
Kan-A-filler: Kan-A-filler(X;A;filler)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
cubical-type-at: A(a)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
Kan_sigma_filler: Kan_sigma_filler(A;B)
, 
uall: ∀[x:A]. B[x]
, 
nameset: nameset(L)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
top: Top
, 
let: let, 
Kan-A-filler: Kan-A-filler(X;A;filler)
, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube)
, 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L)
, 
l_all: (∀x∈L.P[x])
, 
spreadn: spread3, 
is-A-face: is-A-face(X;A;I;alpha;bx;f)
, 
A-face: A-face(X;A;I;alpha)
, 
less_than: a < b
, 
prop: ℙ
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_upper: {i...}
, 
coordinate_name: Cname
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
sigma-box-snd: sigma-box-snd(bx)
, 
sigma-box-fst: sigma-box-fst(bx)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
respects-equality: respects-equality(S;T)
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
cube-set-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
cubical-sigma: Σ A B
, 
true: True
, 
cubical-type-at: A(a)
Lemmas referenced : 
Kan-cubical-type_wf, 
cube-context-adjoin_wf, 
Kan-type_wf, 
cubical-set_wf, 
I-cube_wf, 
list_wf, 
int_seg_wf, 
coordinate_name_wf, 
nameset_wf, 
subtype_rel_list, 
cubical-sigma_wf, 
A-open-box_wf, 
cubical-type-at_wf, 
sigma-box-snd_wf, 
cc-adjoin-cube_wf, 
sigma-box-fst_wf, 
Kanfiller_wf, 
decidable__equal-coordinate_name, 
sq_stable__l_subset, 
istype-void, 
cubical-sigma-at, 
length_wf, 
A-face_wf, 
cubical-type-ap-morph_wf, 
face-map_wf2, 
cube-set-restriction_wf, 
nil_wf, 
cons_wf, 
cname_deq_wf, 
list-diff_wf, 
sq_stable__equal, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
sq_stable__le, 
sq_stable__l_member, 
int_seg_properties, 
select_wf, 
fills-A-open-box_wf, 
length-map, 
select-map, 
top_wf, 
subtype-respects-equality, 
equal_functionality_wrt_subtype_rel2, 
subtype_rel_self, 
subtype_rel-equal, 
cc-adjoin-cube-restriction, 
is-A-face_wf, 
Kan-A-filler_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
sqequalRule, 
inhabitedIsType, 
rename, 
setElimination, 
independent_isectElimination, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
equalitySymmetry, 
equalityTransitivity, 
equalityIsType1, 
dependent_pairEquality_alt, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
voidElimination, 
isect_memberEquality_alt, 
applyLambdaEquality, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
equalityIstype, 
hyp_replacement, 
spreadEquality, 
productEquality, 
productIsType
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}.
    (Kan\_sigma\_filler(A;B)  \mmember{}  \{filler:I:(Cname  List)
                                                        {}\mrightarrow{}  alpha:X(I)
                                                        {}\mrightarrow{}  J:(nameset(I)  List)
                                                        {}\mrightarrow{}  x:nameset(I)
                                                        {}\mrightarrow{}  i:\mBbbN{}2
                                                        {}\mrightarrow{}  A-open-box(X;\mSigma{}  Kan-type(A)  Kan-type(B);I;alpha;J;x;i)
                                                        {}\mrightarrow{}  \mSigma{}  Kan-type(A)  Kan-type(B)(alpha)| 
                                                        Kan-A-filler(X;\mSigma{}  Kan-type(A)  Kan-type(B);filler)\}  )
Date html generated:
2019_11_05-PM-00_30_26
Last ObjectModification:
2018_12_10-AM-09_29_41
Theory : cubical!sets
Home
Index