Nuprl Lemma : Kan_sigma_filler_wf

X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀B:{X.Kan-type(A) ⊢ _(Kan)}.
  (Kan_sigma_filler(A;B) ∈ {filler:I:(Cname List)
                            ⟶ alpha:X(I)
                            ⟶ J:(nameset(I) List)
                            ⟶ x:nameset(I)
                            ⟶ i:ℕ2
                            ⟶ A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)
                            ⟶ Σ Kan-type(A) Kan-type(B)(alpha)| 
                            Kan-A-filler(X;Σ Kan-type(A) Kan-type(B);filler)} )


Proof




Definitions occuring in Statement :  Kan_sigma_filler: Kan_sigma_filler(A;B) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} Kan-A-filler: Kan-A-filler(X;A;filler) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-sigma: Σ B cube-context-adjoin: X.A cubical-type-at: A(a) I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T Kan_sigma_filler: Kan_sigma_filler(A;B) uall: [x:A]. B[x] nameset: nameset(L) uimplies: supposing a subtype_rel: A ⊆B squash: T sq_stable: SqStable(P) implies:  Q and: P ∧ Q A-open-box: A-open-box(X;A;I;alpha;J;x;i) top: Top let: let Kan-A-filler: Kan-A-filler(X;A;filler) fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) l_all: (∀x∈L.P[x]) spreadn: spread3 is-A-face: is-A-face(X;A;I;alpha;bx;f) A-face: A-face(X;A;I;alpha) less_than: a < b prop: false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) int_upper: {i...} coordinate_name: Cname lelt: i ≤ j < k guard: {T} int_seg: {i..j-} sigma-box-snd: sigma-box-snd(bx) sigma-box-fst: sigma-box-fst(bx) pi1: fst(t) pi2: snd(t) respects-equality: respects-equality(S;T) cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cube-set-restriction: f(s) cubical-type-ap-morph: (u f) cubical-sigma: Σ B true: True cubical-type-at: A(a)
Lemmas referenced :  Kan-cubical-type_wf cube-context-adjoin_wf Kan-type_wf cubical-set_wf I-cube_wf list_wf int_seg_wf coordinate_name_wf nameset_wf subtype_rel_list cubical-sigma_wf A-open-box_wf cubical-type-at_wf sigma-box-snd_wf cc-adjoin-cube_wf sigma-box-fst_wf Kanfiller_wf decidable__equal-coordinate_name sq_stable__l_subset istype-void cubical-sigma-at length_wf A-face_wf cubical-type-ap-morph_wf face-map_wf2 cube-set-restriction_wf nil_wf cons_wf cname_deq_wf list-diff_wf sq_stable__equal int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le sq_stable__le sq_stable__l_member int_seg_properties select_wf fills-A-open-box_wf length-map select-map top_wf subtype-respects-equality equal_functionality_wrt_subtype_rel2 subtype_rel_self subtype_rel-equal cc-adjoin-cube-restriction is-A-face_wf Kan-A-filler_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality natural_numberEquality sqequalRule inhabitedIsType rename setElimination independent_isectElimination applyEquality dependent_functionElimination lambdaEquality_alt equalitySymmetry equalityTransitivity equalityIsType1 dependent_pairEquality_alt imageElimination baseClosed imageMemberEquality because_Cache independent_functionElimination productElimination voidElimination isect_memberEquality_alt applyLambdaEquality independent_pairFormation int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination equalityIstype hyp_replacement spreadEquality productEquality productIsType

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}.
    (Kan\_sigma\_filler(A;B)  \mmember{}  \{filler:I:(Cname  List)
                                                        {}\mrightarrow{}  alpha:X(I)
                                                        {}\mrightarrow{}  J:(nameset(I)  List)
                                                        {}\mrightarrow{}  x:nameset(I)
                                                        {}\mrightarrow{}  i:\mBbbN{}2
                                                        {}\mrightarrow{}  A-open-box(X;\mSigma{}  Kan-type(A)  Kan-type(B);I;alpha;J;x;i)
                                                        {}\mrightarrow{}  \mSigma{}  Kan-type(A)  Kan-type(B)(alpha)| 
                                                        Kan-A-filler(X;\mSigma{}  Kan-type(A)  Kan-type(B);filler)\}  )



Date html generated: 2019_11_05-PM-00_30_26
Last ObjectModification: 2018_12_10-AM-09_29_41

Theory : cubical!sets


Home Index