Nuprl Lemma : add-name-com
∀[I:fset(ℕ)]. ∀[i,j:ℕ].  (I+i+j = I+j+i ∈ fset(ℕ))
Proof
Definitions occuring in Statement : 
add-name: I+i
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset-extensionality, 
int-deq_wf, 
strong-subtype-deq-subtype, 
nat_wf, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
add-name_wf, 
fset-member_witness, 
fset-member_wf, 
or_wf, 
equal_wf, 
iff_transitivity, 
iff_weakening_uiff, 
fset-member-add-name
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
applyEquality, 
intEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
setElimination, 
rename, 
unionElimination, 
inrFormation, 
inlFormation, 
dependent_functionElimination, 
lambdaFormation, 
orFunctionality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].    (I+i+j  =  I+j+i)
Date html generated:
2016_05_18-PM-00_00_17
Last ObjectModification:
2015_12_28-PM-03_06_45
Theory : cubical!type!theory
Home
Index