Nuprl Lemma : closed-cubical-universe_wf
cc𝕌 ∈ { * ⊢' _}
Proof
Definitions occuring in Statement : 
closed-cubical-universe: cc𝕌, 
closed-cubical-type: { * ⊢ _}, 
member: t ∈ T
Definitions unfolded in proof : 
closed-cubical-universe: cc𝕌, 
member: t ∈ T, 
closed-cubical-type: { * ⊢ _}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
names-hom: I ⟶ J, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
formal-cube: formal-cube(I), 
fibrant-type: FibrantType(X), 
and: P ∧ Q, 
cand: A c∧ B, 
squash: ↓T, 
prop: ℙ, 
uimplies: b supposing a, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
type-cat: TypeCat, 
cat-comp: cat-comp(C), 
compose: f o g
Lemmas referenced : 
fibrant-type_wf_formal-cube, 
fset_wf, 
nat_wf, 
csm-fibrant-type_wf, 
formal-cube_wf1, 
context-map_wf, 
subtype_rel_self, 
I_cube_wf, 
names-hom_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-fibrant-type-id, 
nh-id_wf, 
context-map-1, 
iff_weakening_equal, 
context-map-comp, 
csm-fibrant-comp, 
cube_set_map_wf, 
nh-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
dependent_functionElimination, 
applyEquality, 
instantiate, 
cumulativity, 
universeEquality, 
inhabitedIsType, 
because_Cache, 
functionIsType, 
lambdaFormation_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
productIsType, 
equalityIstype
Latex:
cc\mBbbU{}  \mmember{}  \{  *  \mvdash{}'  \_\}
Date html generated:
2020_05_20-PM-07_05_46
Last ObjectModification:
2020_04_25-PM-00_12_01
Theory : cubical!type!theory
Home
Index