Nuprl Lemma : context-subset-ap-iota

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ((A)iota A ∈ {Gamma, phi ⊢ _})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-type: {X ⊢ _} subset-iota: iota csm-ap-type: (AF)s csm-ap: (s)x context-subset: Gamma, phi all: x:A. B[x]
Lemmas referenced :  cubical-type-equal2 context-subset_wf csm-ap-type_wf subset-iota_wf2 thin-context-subset cubical-term_wf face-type_wf cubical-type_wf cubical_set_wf I_cube_wf fset_wf nat_wf I_cube_pair_redex_lemma names-hom_wf cube_set_restriction_pair_lemma cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination universeIsType instantiate setElimination rename productElimination sqequalRule dependent_pairEquality_alt functionExtensionality dependent_functionElimination Error :memTop,  applyEquality because_Cache functionIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    ((A)iota  =  A)



Date html generated: 2020_05_20-PM-04_08_10
Last ObjectModification: 2020_04_10-AM-03_49_33

Theory : cubical!type!theory


Home Index