Nuprl Lemma : context-subset-ap-iota
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ((A)iota = A ∈ {Gamma, phi ⊢ _})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
csm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
Lemmas referenced : 
cubical-type-equal2, 
context-subset_wf, 
csm-ap-type_wf, 
subset-iota_wf2, 
thin-context-subset, 
cubical-term_wf, 
face-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
names-hom_wf, 
cube_set_restriction_pair_lemma, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
universeIsType, 
instantiate, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
dependent_pairEquality_alt, 
functionExtensionality, 
dependent_functionElimination, 
Error :memTop, 
applyEquality, 
because_Cache, 
functionIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    ((A)iota  =  A)
Date html generated:
2020_05_20-PM-04_08_10
Last ObjectModification:
2020_04_10-AM-03_49_33
Theory : cubical!type!theory
Home
Index