Nuprl Lemma : context-subset-term-iota

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[v:{Gamma, phi ⊢ _:A}].  ((v)iota v ∈ {Gamma, phi ⊢ _:A})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} cubical-term: {X ⊢ _:A} subset-iota: iota csm-ap-term: (t)s csm-ap: (s)x uimplies: supposing a
Lemmas referenced :  cubical-term_wf context-subset_wf thin-context-subset cubical-type-cumulativity2 cubical_set_cumulativity-i-j face-type_wf cubical-type_wf cubical_set_wf cubical-term-equal I_cube_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis equalityTransitivity applyEquality sqequalRule setElimination rename functionExtensionality independent_isectElimination because_Cache

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[v:\{Gamma,  phi  \mvdash{}  \_:A\}].    ((v)iota  =  v)



Date html generated: 2020_05_20-PM-04_08_37
Last ObjectModification: 2020_04_10-AM-03_50_33

Theory : cubical!type!theory


Home Index