Nuprl Lemma : context-subset-term-iota
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[v:{Gamma, phi ⊢ _:A}].  ((v)iota = v ∈ {Gamma, phi ⊢ _:A})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi, 
face-type: 𝔽, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
cubical-term: {X ⊢ _:A}, 
subset-iota: iota, 
csm-ap-term: (t)s, 
csm-ap: (s)x, 
uimplies: b supposing a
Lemmas referenced : 
cubical-term_wf, 
context-subset_wf, 
thin-context-subset, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
face-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-term-equal, 
I_cube_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
applyEquality, 
sqequalRule, 
setElimination, 
rename, 
functionExtensionality, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[v:\{Gamma,  phi  \mvdash{}  \_:A\}].    ((v)iota  =  v)
Date html generated:
2020_05_20-PM-04_08_37
Last ObjectModification:
2020_04_10-AM-03_50_33
Theory : cubical!type!theory
Home
Index